• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大豆不同部位处理对茶园土壤细菌和真菌群落的影响

高水练 朱悦蕊 何鹏 佐明兴 韦雅芳 陈倩洁 胡雲飞

高水练,朱悦蕊,何鹏,等. 大豆不同部位处理对茶园土壤细菌和真菌群落的影响 [J]. 福建农业学报,2022,37(10):1354−1361 doi: 10.19303/j.issn.1008-0384.2022.010.015
引用本文: 高水练,朱悦蕊,何鹏,等. 大豆不同部位处理对茶园土壤细菌和真菌群落的影响 [J]. 福建农业学报,2022,37(10):1354−1361 doi: 10.19303/j.issn.1008-0384.2022.010.015
GAO S L, ZHU Y R, HE P, et al. Soil Microbial Community Affected by Treatments on Soybean Plants Grown at Tea Plantations [J]. Fujian Journal of Agricultural Sciences,2022,37(10):1354−1361 doi: 10.19303/j.issn.1008-0384.2022.010.015
Citation: GAO S L, ZHU Y R, HE P, et al. Soil Microbial Community Affected by Treatments on Soybean Plants Grown at Tea Plantations [J]. Fujian Journal of Agricultural Sciences,2022,37(10):1354−1361 doi: 10.19303/j.issn.1008-0384.2022.010.015

大豆不同部位处理对茶园土壤细菌和真菌群落的影响

doi: 10.19303/j.issn.1008-0384.2022.010.015
基金项目: 福建省自然科学基金项目(2019J01664);安溪县茶园土壤配方施肥与生态改良项目(KH210209A);海南省五指山市生态科技特派员项目(CZ2020068);教育部产学合作协同育人项目(202102377005)
详细信息
    作者简介:

    高水练(1979−),男,博士,副教授,研究方向:茶树营养与生理生态(E-mail:gaoshuilian@126.com

    通讯作者:

    胡雲飞(1987−),男,硕士,助理研究员,研究方向:茶树栽培生理与生态研究(E-mail: huyunfei@fafu.edu.cn

  • 中图分类号: S 571.1

Soil Microbial Community Affected by Treatments on Soybean Plants Grown at Tea Plantations

  • 摘要:   目的  探明大豆不同部位处理对茶树土壤细菌和真菌的群落结构及多样性的影响。  方法  采用MiSeq高通量测序方法,分析USB(种植大豆,移除大豆地上部枝叶、只保留根系于土壤中)、ASB(未种植大豆,将USB处理的大豆地上部割下覆盖到土壤表面)、WSB(种植大豆,保留大豆根系并将大豆上部割下就地覆盖土壤表面)3种处理方式对茶树根际土壤细菌和真菌群落多样性、组间差异性和相关性。  结果  相对CK组,ASB、USB和WSB三组茶园土壤细菌的OTU数量、ACE指数和Chao1指数显著提高(P<0.05);ASB和WSB组中真菌的OTU数量显著提高,3组真菌的ACE指数显著提高。Bray聚类和三元相位图表明,3组处理组土壤细菌和真菌的群落结构相似性高;优势细菌为鞘鞍醇单胞菌属(Sphingomonas,7.53%),与Bryobacter菌属互为正相关性;而相对于CK,真菌群落相对丰度产生明显的差异,其中优势菌种阿尼菌属 (Arnium, 7.21%)只存在于3个处理组,并与青霉菌属(Penicillium)呈现出负相关性;Condenascus的相对丰度也明显提高。  结论  大豆不同部位处理提高了茶园土壤微生物群落多样性、增加有益微生物种类,其中WSB组中有益的微生物富集作用更为显著。
  • 图  1  基于Bray Curtis算法的处理组聚类分析

    A、C:组间的细菌聚类;B、D: 组间的真菌聚类

    Figure  1.  Cluster analysis by Bray Curtis distance of 4 soil samples

    A、C: bacterial clustering between groups; B、D: fungal clustering between groups.

    图  2  不同处理后对茶园土壤微生物的群落分布

    A、B:组间的细菌群落结构;C、D: 组间的真菌群落结构

    Figure  2.  Community microbial distribution in tea plantation soil with different treatments on soybean plants

    A、B :community bacterial structures of groups; C、D:community fungal structures of groups.

    图  3  3个不同处理的OTU和门水平微生物分布的三元图

    ①A:组间的细菌菌种差异;B: 组间的真菌菌种差异;②三角形的3个角分别代表3个样品,3个样品分别用3个颜色表示,三条边用于度量相应颜色的样品的物种丰度,三角图中的圆圈代表某一门水平下包含的所有种水平的物种分类,圆圈大小代表物种的平均相对丰度。

    Figure  3.  Ternary plot of OTU and phylum-level microbial distribution in soils under treatments

    ①A: different bacterial strains among groups; B: different fungal strains among groups; ②3 corners in a triangle represent 3 different samples in different colors, and 3 sides signify species abundance in samples of corresponding color. Circle inside a triangle represents species classification of all species at a specified level, and size of circle signifies average relative abundance of species.

    图  4  不同处理后对微生物的属水平相关性分析

    A:细菌属水平相关性;B: 真菌属水平相关性;圆圈代表物种,圆圈大小代表物种平均丰度大小;线条代表两物种间相关,线的粗细代表相关性的强弱;线的颜色:橙色代表正相关,绿色代表负相关。

    Figure  4.  Correlation among microbes in soil at genus level after treatments.

    A: among bacteria; B: among fungi;Circle represents species and its size average abundance; line, correlation between two species and its thickness strength of correlation; orange-colored line, positive correlation; and green-colored line, negative correlation.

    表  1  不同处理后茶园土壤微生物Alpha多样性指数

    Table  1.   Indices of alpha microbial diversities of tea plantation soils with different treatments on soybean plants

    类别
    Category
    处理
    Treatment
    OTU数量
    OTU counts
    ACE指数
    ACE index
    Chao1指数
    Chao1 index
    辛普森多样性指数
    Simpson index
    香农多样性指数
    Shannon index
    细菌 BacteriumCK985.67±132.90 b1042.00±97.63 b1055.43±95.03 b0.01±0.00 a5.71±0.18 a
    ASB1247.50±21.36 a1296.88±11.65 a1305.34±14.97 a0.02±0.01 a5.58±0.23 a
    USB1178.50±47.18 a1231.65±39.31 a1242.85±39.17 a0.11±0.10 a5.02±0.66 a
    WSB1233.67±22.00 a1322.35±14.42 a1326.90±14.39 a0.02±0.00 a5.50±0.12 a
    真菌 FungusCK170.67±32.52 c185.41±40.11 b176.25±35.13 a0.07±0.04 a3.61±0.43 a
    ASB221.33±14.94 ab279.63±13.94 a251.77±13.57 a0.06±0.01 a3.77±0.12 a
    USB180.83±10.70 bc281.73±29.52 a256.58±37.65 a0.09±0.02 a3.41±0.18 a
    WSB241.33±10.56 a263.26±9.65 a262.41±11.21 a0.10±0.03 a3.40±0.18 a
    数据表示重复组的平均值±标准误差。不同字母表示组间差异显著(P <0.05).
    Data represent mean ± standard error of replicates. Different letters indicate significant difference between the treatments (P< 0.05).
    下载: 导出CSV
  • [1] SILVA L S, SEABRA A R, LEITÃO J N, et al. Possible role of glutamine synthetase of the prokaryotic type (GSI-like) in nitrogen signaling in Medicago truncatula [J]. Plant Science, 2015, 240: 98−108. doi: 10.1016/j.plantsci.2015.09.001
    [2] GUI H, FAN L C, WANG D H, et al. Organic management practices shape the structure and associations of soil bacterial communities in tea plantations [J]. Applied Soil Ecology, 2021, 163: 103975. doi: 10.1016/j.apsoil.2021.103975
    [3] ZHANG J C, ZHANG Z M, HUANG X F. Spatial heterogeneity of pH and heavy metal Cd in the soils of tea gardens in the plateau mountain regions, PR China [J]. Environmental Monitoring and Assessment, 2021, 193: 646. doi: 10.1007/s10661-021-09431-1
    [4] YU J L, LIN S, SHAABAN M, et al. Nitrous oxide emissions from tea garden soil following the addition of urea and rapeseed cake [J]. Journal of Soils and Sediments, 2020, 20: 3330−3339. doi: 10.1007/s11368-020-02641-z
    [5] LI Y C, LI Z W, ARAFAT Y, et al. Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization [J]. European Journal of Soil Biology, 2017, 81: 48−54. doi: 10.1016/j.ejsobi.2017.06.008
    [6] BHATTACHARYYA P N, SARMAH S R. The role of microbes in tea cultivation[M]. India: Burleigh Dodds Science Publishing, 2018, 41: 135-167.
    [7] DUAN Y, SHEN J Z, ZHANG X L, et al. E­ffects of soybean–tea intercropping on soil-available nutrients and tea quality [J]. Acta Physiologiae Plantarum, 2019, 41(8): 140. doi: 10.1007/s11738-019-2932-8
    [8] 黎健龙, 涂攀峰, 陈娜, 等. 茶树与大豆间作效应分析 [J]. 中国农业科学, 2008, 41(7):2040−2047. doi: 10.3864/j.issn.0578-1752.2008.07.022

    LI J L, TU P F, CHEN N, et al. Effects of tea intercropping with soybean [J]. Scientia Agricultura Sinica, 2008, 41(7): 2040−2047.(in Chinese) doi: 10.3864/j.issn.0578-1752.2008.07.022
    [9] LIU L T, KNIGHT J D, LEMKE R L, et al. A side-by-side comparison of biological nitrogen fixation and yield of four legume crops [J]. Plant Soil, 2019, 442(1-2): 169−182. doi: 10.1007/s11104-019-04167-x
    [10] PROCHÁZKA P, ŠTRANC P, VOSTŘEL J, et al. The influence of effective soybean seed treatment on root biomass formation and seed production [J]. Plant, Soil and Environment, 2019, 65(12): 588−593. doi: 10.17221/545/2019-PSE
    [11] 韦持章, 农玉琴, 陈远权, 等. 茶树/大豆间作对根际土壤微生物群落及酶活性的影响 [J]. 西北农业学报, 2018, 27(4):537−544. doi: 10.7606/j.issn.1004-1389.2018.04.011

    WEI C Z, NONG Y Q, CHEN Y Q, et al. Effects of tea and soybean intercropping on soil microbial community and enzyme activity [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(4): 537−544.(in Chinese) doi: 10.7606/j.issn.1004-1389.2018.04.011
    [12] GAO S L, HE P, LIN T X, et al. Consecutive soybean (Glycine max) planting and covering improve acidified tea garden soil [J]. PLoS ONE, 2021, 16(7): e0254502. doi: 10.1371/journal.pone.0254502
    [13] 鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2000.
    [14] TEDERSOO L, BAHRAM M, PÕLME S, et al. Global diversity and geography of soil fungi [J]. Science, 2014, 346(6213): 1078.
    [15] BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome [J]. Nature, 2018, 560(7717): 233−237. doi: 10.1038/s41586-018-0386-6
    [16] 田春杰, 陈家宽, 钟扬. 微生物系统发育多样性及其保护生物学意义 [J]. 应用生态学报, 2003, 14(4):609−612. doi: 10.3321/j.issn:1001-9332.2003.04.030

    TIAN C J, CHEN J K, ZHONG Y. Phylogenetic diversity of microbes and its perspectives in conservation biology [J]. Chinese Journal of Applied Ecology, 2003, 14(4): 609−612.(in Chinese) doi: 10.3321/j.issn:1001-9332.2003.04.030
    [17] 韦锦坚, 覃潇敏, 农玉琴, 等. 茶与大豆间作对土壤微生物群落代谢功能多样性的影响 [J]. 华北农学报, 2021, 36(S1):289−296. doi: 10.7668/hbnxb.20191878

    WEI J J, QIN X M, NONG Y Q, et al. Effects of tea and soybean intercropping on metabolic functional diversity of soil microbial community [J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1): 289−296.(in Chinese) doi: 10.7668/hbnxb.20191878
    [18] 李鑫, 张会慧, 岳冰冰, 等. 桑树-大豆间作对盐碱土碳代谢微生物多样性的影响 [J]. 应用生态学报, 2012, 23(7):1825−1831. doi: 10.13287/j.1001-9332.2012.0209

    LI X, ZHANG H H, YUE B B, et al. Effects of mulberry-soybean intercropping on carbon-metabolic microbial diversity in saline-alkaline soil [J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1825−1831.(in Chinese) doi: 10.13287/j.1001-9332.2012.0209
    [19] 魏兰芳, 张荣琴, 姚博, 等. 大豆轮作及秸秆还田模式对白菜根肿病的影响 [J]. 江西农业大学学报, 2021, 43(1):52−62. doi: 10.13836/j.jjau.2021007

    WEI L F, ZHANG R Q, YAO B, et al. Effect of rotating soybean and its straw returning on Chinese cabbage clubroot disease [J]. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(1): 52−62.(in Chinese) doi: 10.13836/j.jjau.2021007
    [20] 马玲, 马琨, 汤梦洁, 等. 间作与接种AMF对连作土壤微生物群落结构与功能的影响 [J]. 生态环境学报, 2013, 22(8):1341−1347. doi: 10.3969/j.issn.1674-5906.2013.08.011

    MA L, MA K, TANG M J, et al. Effects of intecropping and inoculation of AMF on the microbial community structure and function of continuous cropping soil [J]. Ecology and Environmental Sciences, 2013, 22(8): 1341−1347.(in Chinese) doi: 10.3969/j.issn.1674-5906.2013.08.011
    [21] 马立锋, 陈红金, 单英杰, 等. 浙江省绿茶主产区茶园施肥现状及建议 [J]. 茶叶科学, 2013, 33(1):74−84. doi: 10.13305/j.cnki.jts.2013.01.010

    MA L F, CHEN H J, SHAN Y J, et al. Status and suggestions of tea garden fertilization on main green tea-producing counties in Zhengjiang Province [J]. Journal of Tea Science, 2013, 33(1): 74−84.(in Chinese) doi: 10.13305/j.cnki.jts.2013.01.010
    [22] WEN B, ZHANG X L, REN S, et al. Characteristics of soil nutrients, heavy metals and tea quality in different intercropping patterns [J]. Agroforestry systems, 2020, 94(3): 963−974. doi: 10.1007/s10457-019-00463-8
    [23] 吕宁, 石磊, 刘海燕, 等. 生物药剂滴施对棉花黄萎病及根际土壤微生物数量和多样性的影响 [J]. 应用生态学报, 2019, 30(2):602−614. doi: 10.13287/j.1001-9332.201902.032

    LYU N, SHI L, LIU H Y, et al. Effects of biological agent dripping on cotton Verticillium wilt and rhizosphere soil microorganism [J]. Chinese Journal of Applied Ecology, 2019, 30(2): 602−614.(in Chinese) doi: 10.13287/j.1001-9332.201902.032
    [24] 郝海平, 白红彤, 夏菲, 等. 茶-山苍子间作对茶园土壤微生物群落结构的影响 [J]. 中国农业科学, 2021, 54(18):3959−3969. doi: 10.3864/j.issn.0578-1752.2021.18.014

    HAO H P, BAI H T, XIA F, et al. Effects of tea-Litsea cubeba intrercropping on soil microbial community structure in tea plantation [J]. Scientia Agricultura Sinica, 2021, 54(18): 3959−3969.(in Chinese) doi: 10.3864/j.issn.0578-1752.2021.18.014
    [25] 张玥, 胡雲飞, 王树茂, 等. 茶园年限对根际土壤真菌群落结构及多样性的影响 [J]. 应用与环境生物学报, 2018, 24(5):972−977. doi: 10.19675/j.cnki.1006-687x.2018.04011

    ZHANG Y, HU Y F, WANG S M, et al. The structure and diversity of the fungal community in rhizosphere soil from tea gardens of different ages [J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(5): 972−977.(in Chinese) doi: 10.19675/j.cnki.1006-687x.2018.04011
    [26] CHEN B, SHEN J G, ZHANG X C, et al. The endophytic bacterium, Sphingomonas SaMR12, improves the potential for Zinc phytoremediation by its host, Sedum alfredii [J]. PLoS ONE, 2014, 9(9): e106826. doi: 10.1371/journal.pone.0106826
    [27] MYRESIOTIS C K, VRYZAS Z, PAPADOPOULOU-MOURKIDOU E. Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth [J]. Biodegradation, 2012, 23(2): 297−310. doi: 10.1007/s10532-011-9509-6
    [28] SHANTHIYAA V, SARAVANAKUMAR D, RAJENDRAN L, et al. Use of Chaetomium globosum for biocontrol of potato late blight disease [J]. Crop Protection, 2013, 52: 33−38. doi: 10.1016/j.cropro.2013.05.006
    [29] ZHANG Q, GUO T F, LI H, et al. Identification of fungal populations assimilating rice root residue-derived carbon by DNA stable-isotope probing [J]. Applied Soil Ecology, 2020, 147: 103374. doi: 10.1016/j.apsoil.2019.103374
    [30] DAYNES C M, MCGEE P A, MIDGLEY D J. Utilisation of plant cell-wall polysaccharides and organic phosphorus substrates by isolates of Aspergillus and Penicillium isolated from soil [J]. Fungal Ecology, 2008, 1(2-3): 94−98. doi: 10.1016/j.funeco.2008.09.001
    [31] ZHU X J, HU Y F, CHEN X, et al. Endophytic fungi from camellia sinensis show an antimicrobial activity against the rice blast pathogen Magnaporthe grisea [J]. Phyton-International Journal of Experimental Botany, 2014, 83: 57−63.
    [32] 葛德永, 姚槐应, 黄昌勇. 茶园土壤耐酸铝微生物的分离鉴定及其耐铝特性研究 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(6):626−632.

    GE D Y, YAO H Y, HUANG C Y. Isolation and characterization of acid- and Al-tolerant microorganisms [J]. Journal of Zhejiang University (Agric. & Life Sci.), 2007, 33(6): 626−632.(in Chinese)
    [33] CHEN L J, JIANG Y J, LIANG C, et al. Competitive interaction with keystone taxa induced negative priming under biochar amendments [J]. Microbiome, 2019, 7: 77. doi: 10.1186/s40168-019-0693-7
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  124
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-14
  • 修回日期:  2022-06-29
  • 网络出版日期:  2022-11-29
  • 刊出日期:  2022-10-30

目录

    /

    返回文章
    返回