• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

农业废弃物戈尔膜发酵过程可培养真菌种群的生态学特性

刘欣 肖荣凤 陈燕萍 陈峥 郑雪芳 张海峰 夏江平 王阶平 刘波

刘欣,肖荣凤,陈燕萍,等. 农业废弃物戈尔膜发酵过程可培养真菌种群的生态学特性 [J]. 福建农业学报,2022,37(11):1483−1492 doi: 10.19303/j.issn.1008-0384.2022.011.015
引用本文: 刘欣,肖荣凤,陈燕萍,等. 农业废弃物戈尔膜发酵过程可培养真菌种群的生态学特性 [J]. 福建农业学报,2022,37(11):1483−1492 doi: 10.19303/j.issn.1008-0384.2022.011.015
LIU X, XIAO R F, CHEN Y P, et al. Ecology of Culturable Fungal Community in a GORE Cover Membrane System for Composting Agricultural Waste [J]. Fujian Journal of Agricultural Sciences,2022,37(11):1483−1492 doi: 10.19303/j.issn.1008-0384.2022.011.015
Citation: LIU X, XIAO R F, CHEN Y P, et al. Ecology of Culturable Fungal Community in a GORE Cover Membrane System for Composting Agricultural Waste [J]. Fujian Journal of Agricultural Sciences,2022,37(11):1483−1492 doi: 10.19303/j.issn.1008-0384.2022.011.015

农业废弃物戈尔膜发酵过程可培养真菌种群的生态学特性

doi: 10.19303/j.issn.1008-0384.2022.011.015
基金项目: 福建省科技计划公益类专项(2020R1034007);福建省高质量发展超越“5511”协同创新工程项目 (XTCXGC2021019)
详细信息
    作者简介:

    刘欣 (1988−),女,硕士,研究方向:农业微生物及其应用 (E-mail:164454540@qq.com

    通讯作者:

    王阶平(1973−),男,博士,研究员,研究方向:微生物学(E-mail:wangjpfaas@foxmail.com

    刘波(1957−),男,博士,研究员,研究方向:微生物生物技术与农业生物药物(E-mail:fzliubo@163.com

  • 中图分类号: X 705

Ecology of Culturable Fungal Community in a GORE Cover Membrane System for Composting Agricultural Waste

  • 摘要:   目的  评估农业废弃物戈尔膜发酵过程中的真菌种群随时间和空间的变化规律,为农业废弃物的资源化利用和戈尔膜发酵效果评价提供理论依据。  方法  以农业废弃物戈尔膜发酵槽物料为研究对象,监测发酵过程物料的温度变化,并通过时间和空间格局采样,分离鉴定物料中的真菌种类及数量,分析发酵过程中的真菌种群数量分布、空间分布型指数、多样性指数和生态位特征等参数。  结果  发酵物料的温度监测表明,第2~16天的平均温度为55.27~74.64 ℃,定义为高温期;第17~27天的平均温度为41.26~50.64 ℃,定义为低温期。从72份物料样本中共分离鉴定出5种真菌,分别为沃尔夫被孢霉(Mortierella walfii)、青霉菌(Penicullium sp.)、烟曲霉(Aspergillus fumigatus)、棘曲霉(A. spinosus)和土曲霉(A. terreus)。从空间分布上看,烟曲霉在物料浅层和深层的种群数量均较多,分别为1.13×105 CFU·g−1和1.47×105 CFU·g−1;而棘曲霉在物料浅层和深层的种群数量均最少,分别为4.90×103 CFU·g−1和1.56×103 CFU·g−1,说明烟曲霉适宜在该物料中生长,而棘曲霉则不适宜。从发酵时间看,发酵前期 (3~12 d)的总菌量在4.10×104 ~1.30×105 CFU·g−1,发酵后期(17~27 d)的总菌量在9.35×103~2.63×104CFU·g−1。发酵过程中真菌种群呈现明显的差异性,且空间分布型为聚集分布,烟曲霉在物料中生存适应性最强,但竞争能力较弱或不存在竞争。  结论  农业废弃物戈尔膜发酵过程中的可培养真菌的数量在不同时间和空间上均存在明显的差异,其空间分布型为聚集分布。
  • 图  1  农业废弃物戈尔膜发酵过程的温度变化

    Figure  1.  Temperature changes during fermentation of agricultural waste in GCMS

    图  2  5个真菌种类的菌落形态

    a:沃尔夫被孢霉;b:青霉菌; c:烟曲霉;d:棘曲霉;e:土曲霉。

    Figure  2.  Colony morphology of 5 fungal species

    a: M. walfii; b: Penicullium sp.; c: A. fumigatus; d: A. spinosus; e: A. terreus.

    表  1  农业废弃物戈尔膜发酵物料中的真菌分离与鉴定

    Table  1.   Isolation and identification of fungi from agricultural waste materials in GCMS

    序号
    No.
    真菌种类   
    Fungal species   
    代表性菌株编号
    Strain no.
    Genbank登录号
    Genbank No.
    ITSBenA
    1 沃尔夫被孢霉 Mortierella walfii FJAT-32629 OM831104
    2 青霉菌 Penicullium sp. FJAT-32630 OM831105 OM897562
    3 烟曲霉 Aspergillus fumigatus FJAT-32633 OM831106 OM897563
    4 棘曲霉 Aspergillus spinosus FJAT-32654 OM831107 OM897564
    5 土曲霉 Aspergillus terreus FJAT-32655 OM831108 OM897565
    下载: 导出CSV

    表  2  农业废弃物戈尔膜发酵过程不同样品的真菌种类与数量统计

    Table  2.   Fungal species and amount in samples from agricultural waste materials in GCMS

    取样点
    Sampling location
    真菌种类
    Fungal species
    不同发酵时间的菌落数
    Fungal amount at different fermentation times/(×102 CFU·g−1
    0 d3 d6 d9 d12 d17 d21 d24 d27 d
    A浅层 A shallow layer 沃尔夫被孢霉 Mortierella walfii 30.0 10.0 0.0 0.0 0.0 2.0 7.3 1.5 5.6
    青霉菌 Penicullium sp. 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    烟曲霉 Aspergillus fumigatus 4.0 0.0 163.0 41.0 33.5 59.4 87.5 7.0 0.0
    棘曲霉 Aspergillus spinosus 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    土曲霉 Aspergillus terreus 0.0 0.0 0.0 5.5 0.0 10.0 0.0 0.0 0.0
    A深层 A deep layer 沃尔夫被孢霉 Mortierella walfii 2.0 12.0 10.0 0.0 0.0 0.0 7.6 87.5 1.0
    青霉菌 Penicullium sp. 10.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    烟曲霉 Aspergillus fumigatus 1.0 39.0 14.0 15.0 800.0 29.5 9.0 100.0 5.0
    棘曲霉 Aspergillus spinosus 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    土曲霉 Aspergillus terreus 0.0 0.0 0.0 0.0 300.0 1.0 0.0 0.0 0.0
    B浅层 B shallow layer 沃尔夫被孢霉 Mortierella walfii 0.0 10.0 1.0 0.0 0.0 0.0 0.5 0.6 0.6
    青霉菌 Penicullium sp. 10.0 0.0 0.0 0.0 55.0 0.0 0.0 0.0 0.0
    烟曲霉 Aspergillus fumigatus 0.0 16.0 270.0 0.0 0.0 0.0 1.0 0.4 0.7
    棘曲霉 Aspergillus spinosus 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    土曲霉 Aspergillus terreus 0.0 0.0 0.0 180.0 0.0 0.0 0.0 0.0 0.0
    B深层 B deep layer 沃尔夫被孢霉 Mortierella walfii 10.0 0.0 0.0 0.0 0.0 0.0 0.5 0.6 11.0
    青霉菌 Penicullium sp. 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0
    烟曲霉 Aspergillus fumigatus 50.0 1.0 1.0 1.6 0.1 0.0 0.5 0.8 0.0
    棘曲霉 Aspergillus spinosus 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0
    土曲霉 Aspergillus terreus 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0
    C浅层 C shallow layer 沃尔夫被孢霉 Mortierella walfii 3.0 4.0 1.0 0.0 0.0 0.0 0.5 8.8 11.0
    青霉菌 Penicullium sp. 1.5 0.0 0.0 9.5 0.0 0.0 0.6 0.0 0.0
    烟曲霉 Aspergillus fumigatus 9.5 23.0 1.5 0.0 11.0 0.0 1.3 0.0 2.0
    棘曲霉 Aspergillus spinosus 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    土曲霉 Aspergillus terreus 0.0 0.0 0.0 420.0 0.0 1.0 0.0 0.0 0.0
    C深层 C deep layer 沃尔夫被孢霉 Mortierella walfii 2.0 15.0 0.0 0.0 0.0 0.1 1.0 3.3 28.8
    青霉菌 Penicullium sp. 8.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0
    烟曲霉 Aspergillus fumigatus 4.0 24.0 0.0 0.1 0.3 0.2 0.8 10.4 0.0
    棘曲霉 Aspergillus spinosus 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    土曲霉 Aspergillus terreus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    D浅层 D shallow layer 沃尔夫被孢霉 Mortierella walfii 5.0 35.0 1.0 0.0 0.0 1.0 9.3 20.0 0.0
    青霉菌 Penicullium sp. 3.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0
    烟曲霉 Aspergillus fumigatus 1.0 170.0 24.0 135.0 29.0 3.2 25.5 6.6 0.0
    棘曲霉 Aspergillus spinosus 11.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    土曲霉 Aspergillus terreus 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
    D深层 D deep layer 沃尔夫被孢霉 Mortierella walfii 1.0 10.0 10.0 0.0 0.0 0.0 0.4 0.8 3.5
    青霉菌 Penicullium sp. 25.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0
    烟曲霉 Aspergillus fumigatus 41.0 23.0 144.0 38.3 67.5 0.0 8.9 14.3 24.3
    棘曲霉 Aspergillus spinosus 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    土曲霉 Aspergillus terreus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    下载: 导出CSV

    表  3  农业废弃物戈尔膜发酵过程真菌数量的空间分布

    Table  3.   Spatial distribution on fungal count in fermentation of agricultural waste in GCMS

    真菌种类
    Fungal species
    取样位置
    Sampling location
    不同发酵时间的菌落数
    Fungal amount at different fermentation times/(×102 CFU·g−1
    0 d3 d6 d9 d12 d17 d21 d24 d27 d总和 Total
    烟曲霉 Aspergillus fumigatus 浅层 14.5 209.0 458.5 176.0 73.5 62.6 115.3 14.0 2.7 1126.1
    深层 96.0 87.0 159.0 55.0 867.9 29.7 19.2 125.5 29.3 1468.6
    棘曲霉 Aspergillus spinosus 浅层 38.0 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49.0
    深层 9.5 5.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 15.6
    土曲霉 Aspergillus terreus 浅层 0.0 0.0 0.0 605.5 0.0 12.0 0.0 0.0 0.0 617.5
    深层 0.0 0.0 0.0 0.0 300.0 1.6 0.0 0.0 0.0 301.6
    沃尔夫被孢霉 Mortierella walfii 浅层 38.0 59.0 3.0 0.0 0.0 3.0 17.6 30.9 17.2 168.7
    深层 15.0 37.0 20.0 0.0 0.0 0.1 9.5 92.2 44.3 218.1
    青霉菌 Penicullium sp. 浅层 39.5 0.0 0.0 9.5 55.0 0.0 3.6 0.0 0.0 107.6
    深层 43.0 2.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 47.8
    总和 Total 293.5 410.0 640.5 846.0 1297.5 109.0 168.0 262.6 93.5 4120.6
    下载: 导出CSV

    表  4  农业废弃物戈尔膜发酵前期真菌种群空间分布型指数

    Table  4.   Spatial distribution pattern index on fungal populations in agricultural waste in GCMS during pre-fermentation period

    真菌种类
    Fungal species
    取样位置
    Sampling location
    拥挤度m*
    Congestion degree
    I指标
    I index
    m*/m指标
    m*/m index
    CA指标
    CA index
    扩散系数C
    Diffusion coefficient
    K指数
    K index
    烟曲霉 Aspergillus fumigatus 浅层 34323.22 15693.22 1.84 0.84 15694.22 1.19
    深层 72568.23 47270.23 2.87 1.87 47271.23 0.54
    棘曲霉 Aspergillus spinosus 浅层 3746.35 2766.35 3.82 2.82 2767.35 0.35
    深层 854.17 542.17 2.74 1.74 543.17 0.58
    土曲霉 Aspergillus terreus 浅层 72659.00 60549.00 6.00 5.00 60550.00 0.20
    深层 35999.00 29999.00 6.00 5.00 30000.00 0.20
    沃尔夫被孢霉 Mortierella walfii 浅层 5666.50 3666.50 2.83 1.83 3667.50 0.55
    深层 3100.81 1660.81 2.15 1.15 1661.81 0.87
    青霉菌 Penicullium sp. 浅层 5098.59 3018.59 2.45 1.45 3019.59 0.69
    深层 4921.22 4021.22 5.47 4.47 4022.22 0.22
    下载: 导出CSV

    表  5  农业废弃物戈尔膜发酵后期真菌种群空间分布型指数

    Table  5.   Spatial distribution pattern index on fungal populations in agricultural waste in GCMS during post-fermentation period

    真菌种类
    Fungal species
    取样位置
    Sampling location
    拥挤度m*
    Congestion degree
    I指标
    I index
    m*/m指标
    m*/m index
    CA指标
    CA index
    扩散系数C
    Diffusion coefficient
    K指数
    K index
    烟曲霉 Aspergillus fumigatus 浅层 10310.28 5445.28 2.12 1.12 5446.28 0.89
    深层 9991.55 4899.05 1.96 0.96 4900.05 1.04
    土曲霉 Aspergillus terreus 浅层 2472.42 754.92 1.44 0.44 755.92 2.28
    深层 8412.88 4760.38 2.30 1.30 4761.38 0.77
    沃尔夫被孢霉 Mortierella walfii 浅层 449.00 359.00 4.99 3.99 360.00 0.25
    深层 349.00 279.00 4.99 3.99 280.00 0.25
    青霉菌 Penicullium sp. 浅层 10310.28 5445.28 2.12 1.12 5446.28 0.89
    深层 9991.55 4899.05 1.96 0.96 4900.05 1.04
    下载: 导出CSV

    表  6  农业废弃物戈尔膜发酵过程不同空间样本的真菌种群多样性指数

    Table  6.   Diversity index on fungal populations in spatial samples of agricultural waste in GCMS fermentation

    空间样本
    Spatial samples
    种类
    Species
    数量
    Amount/(×102 CFU·g−1
    丰富度指数
    Richness index (D)
    均匀度指数
    Pielou’s evenness index(J')
    优势度指数
    Simpson index (λ)
    0 d浅层 0 d shallow layer 4 130 0.32 0.96 0.72
    3 d浅层 3 d shallow layer 3 279 0.20 0.61 0.39
    6 d浅层 6 d shallow layer 2 461.5 0.09 0.06 0.01
    9 d浅层 9 d shallow layer 3 791 0.18 0.54 0.36
    12 d浅层 12 d shallow layer 2 128.5 0.11 0.98 0.49
    17 d浅层 17 d shallow layer 3 77.6 0.22 0.53 0.32
    21 d浅层 21 d shallow layer 3 136.5 0.21 0.46 0.27
    24 d浅层 24 d shallow layer 2 44.9 0.12 0.90 0.43
    27 d浅层 27 d shallow layer 2 19.9 0.13 0.57 0.23
    0 d深层 0 d deep layer 4 163.5 0.31 0.76 0.57
    3 d深层 3 d deep layer 4 131 0.32 0.59 0.48
    6 d深层 6 d deep layer 2 179 0.10 0.51 0.20
    9 d深层 9 d deep layer 1 55 0.00 0.00 0.00
    12 d深层 12 d deep layer 3 1169 0.17 0.52 0.38
    17 d深层 17 d deep layer 3 31.4 0.25 0.20 0.10
    21 d深层 21 d deep layer 3 31.5 0.25 0.80 0.53
    24 d深层 24 d deep layer 2 217.7 0.10 0.98 0.49
    27 d深层 27 d deep layer 2 73.6 0.11 0.97 0.48
    下载: 导出CSV

    表  7  农业废弃物戈尔膜发酵过程真菌种群生态位宽度和生态位重叠

    Table  7.   Niche breadth and overlap of fungal populations in spatial samples of agricultural waste in GCMS fermentation

    种类
    Species
    生态位宽度
    Niche breadth
    生态位重叠Pianka指数
    Niche overlap Pianka index
    烟曲霉
    Aspergillus fumigatus
    棘曲霉
    Aspergillus spinosus
    土曲霉
    Aspergillus terreus
    沃尔夫被孢霉
    Mortierella walfii
    青霉菌
    Penicullium sp.
    烟曲霉 Aspergillus fumigatus 4.59 1.00
    棘曲霉 Aspergillus spinosus 1.66 0.18 1.00
    土曲霉 Aspergillus terreus 1.85 0.52 0.01 1.00
    沃尔夫被孢霉 Mortierella walfii 4.64 0.33 0.45 0.00 1.00
    青霉菌 Penicullium sp. 2.42 0.53 0.80 0.33 0.26 1.00
    下载: 导出CSV
  • [1] 牛明杰, 郑国砥, 朱彦莉, 等. 城市污泥与调理剂混合堆肥过程中有机质组分的变化 [J]. 植物营养与肥料学报, 2016(4):1016−1023. doi: 10.11674/zwyf.15463

    NIU M J, ZHENG G D, ZHU Y L, et al. Dynamic of organic matter fractions during sewage sludge and bulking agent composting [J]. Journal of Plant Nutrition and Fertilizer, 2016(4): 1016−1023.(in Chinese) doi: 10.11674/zwyf.15463
    [2] 刘波, 郑雪芳, 朱昌雄, 等. 脂肪酸生物标记法研究零排放猪舍基质垫层微生物群落多样性 [J]. 生态学报, 2008(11):5488−5498. doi: 10.3321/j.issn:1000-0933.2008.11.033

    LIU B, ZHENG X F, ZHU C X, et al. The diversity of PLFAs biomarkers for the microbial community in the stroma cushion of non-pollution pigsty [J]. Acta Ecologica Sinica, 2008(11): 5488−5498.(in Chinese) doi: 10.3321/j.issn:1000-0933.2008.11.033
    [3] AL-ALAWI M, FELS L E, BENJREID R, et al. Evaluation of the performance of encapsulated lifting system composting technology with a GORE® [J]. Environmental Engineering Research, 2020, 25(3): 299−308.
    [4] AL-ALAWI M, SZEGI T, EL FELS L, et al. Green waste composting under GORE(R) cover membrane at industrial scale: Physico-chemical properties and spectroscopic assessment [J]. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8(1): 385−397.
    [5] TIQUIA S M. Microbiological parameters as indicators of compost maturity [J]. Journal of Applied Microbiology, 2005, 99(4): 816−828. doi: 10.1111/j.1365-2672.2005.02673.x
    [6] NIKAEEN M, NAFEZ A H, BINA B, et al. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting [J]. Waste Management (New York, N Y ), 2015, 39: 104−110. doi: 10.1016/j.wasman.2015.01.028
    [7] ASANO R, OTAWA K, OZUTSUMI Y, et al. Development and analysis of microbial characteristics of an acidulocomposting system for the treatment of garbage and cattle manure [J]. J Biosci Bioeng, 2010, 110(4): 419−425. doi: 10.1016/j.jbiosc.2010.04.006
    [8] ZAINUDIN M H M, RAMLI N, HASSAN M A, et al. Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge [J]. Journal of Industrial Microbiology and Biotechnology, 2017, 44(6): 869−877. doi: 10.1007/s10295-017-1916-1
    [9] ROBLEDO-MAHÓN T, ARANDA E, PESCIAROLI C, et al. Effect of semi-permeable cover system on the bacterial diversity during sewage sludge composting [J]. Journal of Environmental Management, 2018, 215: 57−67.
    [10] VARMA V S, DHAMODHARAN K, KALAMDHAD A S. Characterization of bacterial community structure during in-vessel composting of agricultural waste by 16S rRNA sequencing [J]. Biotech, 2018, 8(7): 1−8.
    [11] 刘波, 陈倩倩, 王阶平, 等. 糖厂滤泥堆肥发酵过程中可培养芽孢杆菌种群动态变化研究 [J]. 农业环境科学学报, 2019(1):201−210. doi: 10.11654/jaes.2018-0094

    LIU B, CHEN Q Q, WANG J P, et al. Dynamic changes in culturable Bacillus-like species populations in the process of sugar-refinery filtering mud composting fermentation to produce bio-organic fertilizers [J]. Journal of Agro-Environment Science, 2019(1): 201−210.(in Chinese) doi: 10.11654/jaes.2018-0094
    [12] ROBLEDO-MAHÓN T, MARTÍN M A, GUTIÉRREZ M C, et al. Sewage sludge composting under semi-permeable film at full-scale: Evaluation of odour emissions and relationships between microbiological activities and physico-chemical variables [J]. Environmental Research, 2019, 177: 108624. doi: 10.1016/j.envres.2019.108624
    [13] ROBLEDO-MAHÓN, GÓMEZ-SILVÁN C, ANDERSEN G L, et al. Assessment of bacterial and fungal communities in a full-scale thermophilic sewage sludge composting pile under a semipermeable cover [J]. Bioresource Technology, 2020, 298: 122550. doi: 10.1016/j.biortech.2019.122550
    [14] 杨海水, 熊艳琴, 王琪, 等. AM真菌物种多样性: 生态功能、影响因素及维持机制 [J]. 生态学报, 2016, 36(10):2826−2832.

    YANG H S, XIONG Y Q, WANG Q, et al. Arbuscular mycorrhizal fungal species diversity: Ecological functioning, determinants and assembling mechanisms [J]. Chinese Journal of Plant Ecology, 2016, 36(10): 2826−2832.(in Chinese)
    [15] 肖荣凤, 刘波, 朱育菁, 等. 养猪微生物发酵床真菌空间分布特性研究 [J]. 中国生态农业学报, 2018(4):493−504. doi: 10.13930/j.cnki.cjea.170904

    XIAO R F, LIU B, ZHU Y J, et al. Spatial distribution characteristics of fungal population in microbial fermentation bed for pig rearing [J]. Chinese Journal of Eco-Agriculture, 2018(4): 493−504.(in Chinese) doi: 10.13930/j.cnki.cjea.170904
    [16] 曹红雨, 高广磊, 丁国栋, 等. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性 [J]. 林业科学, 2019(8):118−127. doi: 10.11707/j.1001-7488.20190813

    CAO H Y, GAO G L, DING G D, et al. Community structure and diversity of soil fungi in four habitats in Hulun Buir sandy land [J]. Scientia Silvae Sinicae, 2019(8): 118−127.(in Chinese) doi: 10.11707/j.1001-7488.20190813
    [17] 王芳, 图力古尔. 土壤真菌多样性研究进展 [J]. 菌物研究, 2014(3):178−186. doi: 10.13341/j.jfr.2014.0034

    WANG F, BAU T. Research advances in the diversity of soil fungi [J]. Journal of Fungal Research, 2014(3): 178−186.(in Chinese) doi: 10.13341/j.jfr.2014.0034
    [18] 肖荣凤, 王阶平, 刘波, 等. 大栏养猪微生物发酵床垫料中青霉菌的分离与鉴定 [J]. 福建农业学报, 2016(2):189−193. doi: 10.19303/j.issn.1008-0384.2016.02.017

    XIAO R F, WANG J P, LIU B, et al. Isolation and identification of Penicillium fungi in microbial fermentation bed at pig farms [J]. Fujian Journal of Agricultural Sciences, 2016(2): 189−193.(in Chinese) doi: 10.19303/j.issn.1008-0384.2016.02.017
    [19] 肖荣凤, 朱育菁, 刘波, 等. 微生物发酵床大栏养猪垫料中曲霉菌的分离与鉴定 [J]. 福建农林大学学报(自然科学版), 2017(3):336−342. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2017.03.017

    XIAO R F, ZHU Y J, LIU B, et al. Isolation and identification of Aspergillus from microbial fermentation beds for pig raising [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2017(3): 336−342.(in Chinese) doi: 10.13323/j.cnki.j.fafu(nat.sci.).2017.03.017
    [20] 唐启义, 冯明光. DPS数据处理系统: 实验设计、统计分析及数据挖掘[M]. 北京: 科学出版社, 2007.
    [21] 贾美清, 黄静, 孟元, 等. 内蒙古荒漠草原土壤可培养真菌的群落结构和空间分布分析 [J]. 草地学报, 2017(2):315−321.

    JIA M Q, HUANG J, MENG Y, et al. Analysis of cultivable fungal community structure and spatial distribution in desert steppe, Inner Mongolia, China [J]. Acta Agrestia Sinica, 2017(2): 315−321.(in Chinese)
    [22] 李彤, 王梓廷, 刘露, 等. 保护性耕作对西北旱区土壤微生物空间分布及土壤理化性质的影响 [J]. 中国农业科学, 2017, 50(5):859−870. doi: 10.3864/j.issn.0578-1752.2017.05.009

    LI T, WANG Z T, LIU L, et al. Effect of conservation tillage practices on soil microbial spatial distribution and soil physico-chemical properties of the Northwest Drylan [J]. Scientia Agricultura Sinica, 2017, 50(5): 859−870.(in Chinese) doi: 10.3864/j.issn.0578-1752.2017.05.009
    [23] 孟令男, 许修宏, 李洪涛, 等. 污泥堆肥对氯嘧磺隆残留及土壤中真菌群落结构的影响 [J]. 农业环境科学学报, 2014(3):495−501. doi: 10.11654/jaes.2014.03.014

    MENG L N, XU X H, LI H T, et al. Effects of sewage sludge compost on chlorimuron-ethyl residue and fungal community structure in soil [J]. Journal of Agro-Environment Science, 2014(3): 495−501.(in Chinese) doi: 10.11654/jaes.2014.03.014
    [24] MURUGAN R, LOGES R, TAUBE F, et al. Changes in soil microbial biomass and residual indices as ecological indicators of land use change in temperate permanent grassland [J]. Microbial Ecology, 2014, 67(4): 907−918. doi: 10.1007/s00248-014-0383-8
    [25] 吴永英, 顾文杰, 张传富, 等. 禽粪便好氧堆肥过程中霉菌的变化趋势 [J]. 东北农业大学学报, 2006(6):796−798. doi: 10.3969/j.issn.1005-9369.2006.06.018

    WU Y Y, GU W J, ZHANG C F, et al. Study on moulds change current from aerobic composting of chicken manure [J]. Journal of Northeast Agricultural University, 2006(6): 796−798.(in Chinese) doi: 10.3969/j.issn.1005-9369.2006.06.018
    [26] 时红蕾, 王晓昌, 李倩, 等. 四环素对人粪便好氧堆肥过程及微生物群落演替的影响 [J]. 环境科学, 2018(6):2810−2818. doi: 10.13227/j.hjkx.201711043

    SHI H L, WANG X C, LI Q, et al. Effects of elevated tetracycline concentrations on aerobic composting of human feces: Composting behavior and microbial community succession [J]. Environmental Science, 2018(6): 2810−2818.(in Chinese) doi: 10.13227/j.hjkx.201711043
    [27] 葛勉慎, 周海宾, 沈玉君, 等. 添加剂对牛粪堆肥不同阶段真菌群落演替的影响 [J]. 中国环境科学, 2019(12):5173−5181. doi: 10.19674/j.cnki.issn1000-6923.2019.0601

    GE M S, ZHOU H B, SHEN Y J, et al. Effect of additives on the succession of fungal community in different phases of cattle manure composting [J]. China Environmental Science, 2019(12): 5173−5181.(in Chinese) doi: 10.19674/j.cnki.issn1000-6923.2019.0601
    [28] DUAN Y, AWASTHI S K, CHEN H, et al. Evaluating the impact of bamboo biochar on the fungal community succession during chicken manure composting [J]. Bioresource Technology, 2019, 272: 308−314. doi: 10.1016/j.biortech.2018.10.045
    [29] 蔡涵冰, 冯雯雯, 董永华, 等. 畜禽粪便和桃树枝工业化堆肥过程中微生物群演替及其与环境因子的关系 [J]. 环境科学, 2020, 41(2):997−1004. doi: 10.13227/j.hjkx.201907153

    CAI H B, FENG W W, DONG Y H, et al. Microbial community succession in industrial composting with livestock manure and peach branches and relations with environmental factors [J]. Environmental Science, 2020, 41(2): 997−1004.(in Chinese) doi: 10.13227/j.hjkx.201907153
    [30] 许修宏, 门梦琪, 孟庆欣, 等. 牛粪好氧堆肥中真菌群落组成的动态特征 [J]. 东北农业大学学报, 2019(4):45−53. doi: 10.3969/j.issn.1005-9369.2019.04.006

    XU X H, MEN M Q, MENG Q X, et al. Dynamic characteristics of fungal community composition in aerobic cow manure compost [J]. Journal of Northeast Agricultural University, 2019(4): 45−53.(in Chinese) doi: 10.3969/j.issn.1005-9369.2019.04.006
    [31] 李忠佩, 吴晓晨, 陈碧云. 不同利用方式下土壤有机碳转化及微生物群落功能多样性变化 [J]. 中国农业科学, 2007(8):1712−1721. doi: 10.3321/j.issn:0578-1752.2007.08.017

    LI Z P, WU X C, CHEN B Y. Changes in transformation of soil organic carbon and functional diversity of soil microbial community under different land use patterns [J]. Scientia Agricultura Sinica, 2007(8): 1712−1721.(in Chinese) doi: 10.3321/j.issn:0578-1752.2007.08.017
    [32] 张文浩, 门梦琪, 许本姝, 等. 牛粪稻秸新型静态堆肥中真菌群落组成的动态特征 [J]. 农业环境科学学报, 2018(9):2029−2036. doi: 10.11654/jaes.2017-1579

    ZHANG W H, MEN M Q, XU B S, et al. Dynamic characteristics of the composition of the fungal community in a novel static composting system of dairy manure and rice straw [J]. Journal of Agro-Environment Science, 2018(9): 2029−2036.(in Chinese) doi: 10.11654/jaes.2017-1579
    [33] WEIDER L J. Niche breadth and life history variation in a hybrid daphnia complex [J]. Ecology, 1993, 74(3): 935−943. doi: 10.2307/1940817
  • 加载中
图(2) / 表(7)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  120
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 修回日期:  2022-04-24
  • 网络出版日期:  2022-11-29
  • 刊出日期:  2022-11-28

目录

    /

    返回文章
    返回