• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

施用酸性土壤调节剂、腐熟咖啡果皮对咖啡苗生长及土壤养分含量、酶活性的影响

董云萍 赵青云 张昂 赵少官 龙宇宙 孙燕 谭军 林兴军

董云萍,赵青云,张昂,等. 施用酸性土壤调节剂、腐熟咖啡果皮对咖啡苗生长及土壤养分含量、酶活性的影响 [J]. 福建农业学报,2022,37(11):1493−1502 doi: 10.19303/j.issn.1008-0384.2022.011.016
引用本文: 董云萍,赵青云,张昂,等. 施用酸性土壤调节剂、腐熟咖啡果皮对咖啡苗生长及土壤养分含量、酶活性的影响 [J]. 福建农业学报,2022,37(11):1493−1502 doi: 10.19303/j.issn.1008-0384.2022.011.016
DONG Y P, ZHAO Q Y, ZHANG A, et al. Effects of Application of Acid Soil Conditioner and Fermented Coffee Peels on Growth of Coffee Seedlings and Fertility and Enzyme Activities of Soil [J]. Fujian Journal of Agricultural Sciences,2022,37(11):1493−1502 doi: 10.19303/j.issn.1008-0384.2022.011.016
Citation: DONG Y P, ZHAO Q Y, ZHANG A, et al. Effects of Application of Acid Soil Conditioner and Fermented Coffee Peels on Growth of Coffee Seedlings and Fertility and Enzyme Activities of Soil [J]. Fujian Journal of Agricultural Sciences,2022,37(11):1493−1502 doi: 10.19303/j.issn.1008-0384.2022.011.016

施用酸性土壤调节剂、腐熟咖啡果皮对咖啡苗生长及土壤养分含量、酶活性的影响

doi: 10.19303/j.issn.1008-0384.2022.011.016
基金项目: 云南省科技厅院士(专家)工作站项目(202105AF150081);海南省自然科学基金项目(321QN327)
详细信息
    作者简介:

    董云萍(1967−),女,研究员,研究方向:高效栽培技术研究(E-mail:dongyunping@qq.com

    通讯作者:

    龙宇宙(1964−),男,研究员,研究方向:高效栽培技术研究(E-mail:lyzh28007@163.com

  • 中图分类号: S 571.2

Effects of Application of Acid Soil Conditioner and Fermented Coffee Peels on Growth of Coffee Seedlings and Fertility and Enzyme Activities of Soil

  • 摘要:   目的  研究咖啡园施用酸性土壤调节剂、腐熟咖啡果皮对咖啡苗生长及土壤养分含量、酶活的影响,为促进农业废弃物咖啡果皮的综合利用和改良咖啡园酸性土壤质量提供技术支持和理论依据。  方法  采集56年龄咖啡园土壤,添加不同量的酸性土壤调节剂克酸宝(TL)和腐熟咖啡果皮(CP),试验处理分别为:对照CK(表土100%)、TL1(TL 2%)、TL2 (TL 4%)、TL3(TL 6%)、TL4(TL 8%)、CP1 (CP 4%)、CP2(CP 8%),分析添加TL和CP对咖啡叶片光合参数、干物质积累量、土壤pH值、土壤养分含量及土壤酶活性的影响。  结果  添加TL提高土壤pH值0.8~1.6,添加CP土壤pH值先增后降,种植6个月,土壤pH值比对照降低0.50个单位;土壤速效钾、交换性钙、交换性镁含量随TL和CP施入量增加而显著增加,CP处理全N、碱解氮、速效磷显著高于其余处理,但添加TL处理土壤速效磷显著降低,其中TL4比对照低69.34%。光合参数表现最好的是TL2、 TL3, 二磷酸核酮糖(RuBP)酶活性、净光合速率(Pn)分别比对照提高101.16%、135.30%,81.71%、80.35%。其次为CP1、CP2;添加TL和CP土壤酶活性除酸性磷酸酶(ACP)与对照差异不显著外,其余酶活均有不同程度提高。各处理碱性磷酸酶(ALP)是对照的2.05~3.71倍,过氧化氢酶(S-CAT)显著高于对照109.62%~18.60%,由高到低为CP2>CP1>TL4>TL3>TL2。脲酶(S-UE)比对照高18.70%~5.37%,最高为CP2、CP1,其次为TL1、TL4。TL2、 TL3、CP1、CP2处理不同程度促进了咖啡植株生长和干物质累积量,其中株高、茎粗比对照提高25.09%~81.29%,叶、根、茎干重和单株总干重比对照提高1.65~5.02倍,效果最显著为CP1处理。  结论  施用适量的TL和CP改善了土壤微生物环境,提高了土壤养分有效性,促进了咖啡植株的生长。但TL添加量增加,土壤交换态钙过高会引起磷的固定,添加CP随着有机氮的矿化 ,使土壤pH值降低。
  • 图  1  不同处理随种植时间的增加土壤pH值变化

    图中数据为各处理pH值的平均值与对照pH值平均值的差值。

    Figure  1.  Changes on soil pH under treatments in time after potting

    Data are expressed as differences between means of treatment sample and CK.

    图  2  不同处理咖啡叶片光合参数

    图中数值代表各处理的平均值,误差线为标准偏差,不同小写字母表示差异显著(P<0.05)。下图同。

    Figure  2.  Photosynthetic characteristics of coffee seedlings under treatments

    Column height represents average value of a treatment; error bar, standard error; data with different lowercase letters, significant differences in ANOVA (P<0.05). Same for following figures.

    图  3  不同处理咖啡叶片二磷酸核酮糖羧化酶活性

    Figure  3.  RuBP enzyme activity of coffee seedlings under treatments

    图  4  不同处理咖啡氮平衡指数(NBI)和叶绿素相对含量(CHI)

    Figure  4.  Nitrogen balance index and chlorophyll relative content of coffee seedlings under treatments

    图  5  不同处理咖啡植株生长量

    Figure  5.  Growth indicators of coffee seedlings under treatments

    图  6  不同处理咖啡植株干物质累积量

    Figure  6.  Dry biomass accumulation of coffee seedlings under treatments

    图  7  不同处理土壤酸性磷酸酶、碱性磷酸酶、过氧化氢酶和脲酶活性

    Figure  7.  Activities of S-ACP, S-ALP, S-CAT, and S-UE in treatment soils

    表  1  试验材料养分含量及pH值

    Table  1.   Nutrient content and pH of test materials

    试验材料
    Test materials
    SiO2/
    %
    CaO/
    %
    MgO/
    %
    有机质
    Organic matter/%
    全氮
    Total N/(mg·g−1)
    速效磷
    Available p /(mg·g−1)
    速效钾
    Available K/(mg·g−1)
    pH值
    腐熟咖啡果皮
    fermented coffee peel
    1.031.0785.015.24.1846.459.2
    酸性土壤调节剂
    acid soil conditioner
    18.020.04.08.08.5
    表土
    Pod soil
    0.0070.0041.721.200.2140.0795.4
    “—”表示未测定含量。
    "—" indicates undetermined content.
    下载: 导出CSV

    表  2  不同处理土壤养分含量

    Table  2.   Soil nutrient content under treatments

    处理
    Treatment
    全氮
    Total N/(g·kg−1)
    碱解氮
    Alkaline N/(mg·kg−1)
    速效磷
    Available P/(mg·kg−1)
    速效钾
    Available K/(mg·kg−1)
    交换性钙
    Exchangeable Ca/ (mg·kg−1)
    交换性镁
    Exchangeable Mg/ (mg·kg−1)
    CK1.05±
    0.02d
    71.33±0.56d170.29±1.04c89.90±0.79f1217.42±94.08f163.92± 4.43g
    TL11.40±
    0.02c
    81.34±1.13cd124.23±1.17d258.88±2.53e2404.83±28.25d323.75±3.50e
    TL21.35±
    0.03 cd
    84.53±1.40cd64.99±5.09e394.50±1.94d2901.08±68.35b396.08±3.67c
    TL31.37±0.02cd81.76±2.21cd55.94±2.18f477.25±6.36c2953.42±45.46b415.83±4.24b
    TL41.52±0.03bc89.43±5.11c52.21±0.62f527.00±5.26b3365.50±43.79a479.17± 5.13a
    CP11.80±
    0.16b
    147.12±4.90b190.06±3.04b389.90±2.26d2028.33±27.78e248.08±4.87f
    CP22.38±
    0.21a
    192.91±6.56a215.00±0.52a611.23±7.15a2669.42±52.06c343.67±4.42d
    表中数据为各处理的平均值±标准误差,同一列不同英文字母表示差异在P0.05水平具有统计学意义。
    Data are expressed as mean±standard deviation; data with different letters on same column indicate significant differences at P<0.05.
    下载: 导出CSV
  • [1] 徐仁扣. 土壤酸化及其调控研究进展 [J]. 土壤, 2015, 47(2):238−244. doi: 10.13758/j.cnki.tr.2015.02.007

    XU R K. Research progresses in soil acidification and its control [J]. Soils, 2015, 47(2): 238−244.(in Chinese) doi: 10.13758/j.cnki.tr.2015.02.007
    [2] 张华, 张甘霖, 漆智平, 等. 热带地区农场尺度土壤质量现状的系统评价 [J]. 土壤学报, 2003, 40(2):186−193. doi: 10.3321/j.issn:0564-3929.2003.02.004

    ZHANG H, ZHANG G L, QI Z P, et al. Systematic assessment of soil quality at farm level in tropical area of China [J]. Acta Pedologica Sinica, 2003, 40(2): 186−193.(in Chinese) doi: 10.3321/j.issn:0564-3929.2003.02.004
    [3] ZHAO Q Y, XIONG W, XING Y Z, et al. Long-term coffee monoculture alters soil chemical properties and microbial communities [J]. Scientific Reports, 2018, 8: 6116. doi: 10.1038/s41598-018-24537-2
    [4] 赵明珠, 萧自位, 李锦红, 等. 云南咖啡主栽区土壤肥力现状初评 [J]. 热带农业科学, 2018, 38(3):8−14.

    ZHAO M Z, XIAO Z W, LI J H, et al. Evaluation of soil fertility in major coffee planting areas of Yunnan [J]. Chinese Journal of Tropical Agriculture, 2018, 38(3): 8−14.(in Chinese)
    [5] 黄家雄, 吕玉兰, 李贵平, 等. 2020年我国咖啡生产、贸易及消费形势分析 [J]. 中国热带农业, 2021(5):40−53. doi: 10.3969/j.issn.1673-0658.2021.05.007

    HUANG J X, LV Y L, LI G P, et al. Analysis of China's coffee production, trade and consumption in 2020 [J]. China Tropical Agriculture, 2021(5): 40−53.(in Chinese) doi: 10.3969/j.issn.1673-0658.2021.05.007
    [6] 赵青云, 普浩杰, 王秋晶, 等. 咖啡果皮不同堆沤处理养分含量及其对咖啡植株生长的影响 [J]. 热带作物学报, 2020, 41(4):633−639. doi: 10.3969/j.issn.1000-2561.2020.04.001

    ZHAO Q Y, PU H J, WANG Q J, et al. Nutrient content of coffee peel with different composting treatments and its effects on coffee plant growth [J]. Chinese Journal of Tropical Crops, 2020, 41(4): 633−639.(in Chinese) doi: 10.3969/j.issn.1000-2561.2020.04.001
    [7] 赵青云, 邢诒彰, 林兴军, 等. 施用咖啡果皮对咖啡幼苗生长及土壤理化性状的影响 [J]. 热带农业科学, 2017, 37(8):54−59.

    ZHAO Q Y, XING Y Z, LIN X J, et al. Effects of coffee fruit peel application on coffee seedlings growth and soil physiochemical characteristics [J]. Chinese Journal of Tropical Agriculture, 2017, 37(8): 54−59.(in Chinese)
    [8] 匡钰, 肖兵, 张洪波, 等. 云南咖啡初加工废弃物利用及排放情况调查 [J]. 中国热带农业, 2018(5):31−36. doi: 10.3969/j.issn.1673-0658.2018.05.009

    KUANG Y, XIAO B, ZHANG H B, et al. Utilization and emission investigation of waste material from primary processing of coffee in Yunnan [J]. China Tropical Agriculture, 2018(5): 31−36.(in Chinese) doi: 10.3969/j.issn.1673-0658.2018.05.009
    [9] CAI Z J, WANG B R, XU M G, et al. Nitrification and acidification from urea application in red soil (Ferralic Cambisol) after different long-term fertilization treatments [J]. Journal of Soils and Sediments, 2014, 14(9): 1526−1536.[LinkOut doi: 10.1007/s11368-014-0906-4
    [10] 李新举, 张志国. 秸秆覆盖与秸秆翻压还田效果比较 [J]. 国土与自然资源研究, 1999(1):43−45. doi: 10.16202/j.cnki.tnrs.1999.01.013

    LI X J, ZHANG ZG. Influence on soil floods properties of mulching st raws and soil-returning straw [J]. Territory & Natural Resources Stuty, 1999(1): 43−45.(in Chinese) doi: 10.16202/j.cnki.tnrs.1999.01.013
    [11] 蔡晓布, 钱成, 张永青, 等. 秸秆还田对西藏中部退化土壤环境的影响 [J]. 植物营养与肥料学报, 2003, 9(4):411−415. doi: 10.3321/j.issn:1008-505X.2003.04.006

    CAI X B, QIAN C, ZHANG Y Q, et al. Effect of straw returning on the environment of degenerated soil in centr al Tibet [J]. Plant Nutrition and Fertilizing Science, 2003, 9(4): 411−415.(in Chinese) doi: 10.3321/j.issn:1008-505X.2003.04.006
    [12] 孙皓, 王礼焦, 高云, 等. 推广测土配方施肥技术 加快耕地质量建设步伐 [J]. 安徽农学通报(上半月刊), 2009, 15(5):72−74.

    SUN H, WANG L J, GAO Y, et al. Popularize the technique of soil formulation to applying fertilizer, Facilitate the quality of arable land constructions [J]. Anhui Agricultural Science Bulletin, 2009, 15(5): 72−74.(in Chinese)
    [13] 申源源, 陈宏. 秸秆还田对土壤改良的研究进展 [J]. 中国农学通报, 2009, 25(19):291−294.

    SHEN Y Y, CHEN H. The progress of study on soil improvement research with straw stalk [J]. Chinese Agricultural Science Bulletin, 2009, 25(19): 291−294.(in Chinese)
    [14] 杨彩迪, 卢升高. 秸秆直接还田和炭化还田对红壤酸度、养分和交换性能的动态影响 [J]. 环境科学, 2020, 41(9):4246−4252. doi: 10.13227/j.hjkx.202002213

    YANG C D, LU S G. Dynamic effects of direct returning of straw and corresponding biochar on acidity, nutrients, and exchangeable properties of red soil [J]. Environmental Science, 2020, 41(9): 4246−4252.(in Chinese) doi: 10.13227/j.hjkx.202002213
    [15] 郭春雷, 李娜, 彭靖, 等. 秸秆直接还田及炭化还田对土壤酸度和交换性能的影响 [J]. 植物营养与肥料学报, 2018, 24(5):1205−1213. doi: 10.11674/zwyf.17482

    GUO C L, LI N, PENG J, et al. Direct returning of maize straw or as biochar to the field triggers change in acidity and exchangeable capacity in soil [J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1205−1213.(in Chinese) doi: 10.11674/zwyf.17482
    [16] 郭和蓉, 陈琼贤, 彭志平, 等. 荔枝施用营养型酸性土壤改良剂的增产改土效果 [J]. 长江大学学报(自科版), 2005, 2(8):16−19,2.

    GUO H R, CHEN Q X, PENG Z P, et al. Yield-increasing effect modifier application on litch and soil improvement [J]. Journal of Yangtze University (Natural Science Edition), 2005, 2(8): 16−19,2.(in Chinese)
    [17] 陈琼贤, 郭和蓉, 彭志平, 等. 土壤改良剂对龙眼的增产效应 [J]. 果树学报, 2004, 21(2):185−187. doi: 10.3969/j.issn.1009-9980.2004.02.023

    CHEN Q X, GUO H R, PENG Z P, et al. Effect of applying soil amendment on increasing production of longan [J]. Journal of Fruit Science, 2004, 21(2): 185−187.(in Chinese) doi: 10.3969/j.issn.1009-9980.2004.02.023
    [18] BROWN K R, THOMPSON W A, CAMM E L, et al. Effects of N addition rates on the productivity of Picea Sitchensis Thuja plicata, and Tsuga heterophylla seedlings [J]. Trees, 1996, 10(3): 198−205.
    [19] 翟江, 高原, 张晓伟, 等. 硅钙对日光温室黄瓜光合作用及产量和品质的影响 [J]. 园艺学报, 2019, 46(4):701−713. doi: 10.16420/j.issn.0513-353x.2018-0687

    ZHAI J, GAO Y, ZHANG X W, et al. Effects of silicon and calcium on photosynthesis, yield and quality of cucumber in solar-greenhouse [J]. Acta Horticulturae Sinica, 2019, 46(4): 701−713.(in Chinese) doi: 10.16420/j.issn.0513-353x.2018-0687
    [20] 黄家雄. 小粒咖啡标准化生产技术[M]. 北京: 金盾出版社, 2009.
    [21] 王宁, 李九玉, 徐仁扣. 三种植物物料对两种茶园土壤酸度的改良效果 [J]. 土壤, 2009, 41(5):764−771.

    WANG N, LI J Y, XU R K. Amelioration effects of three plant materials on acid tea garden soils [J]. Soils, 2009, 41(5): 764−771.(in Chinese)
    [22] 张永春. 长期不同施肥对土壤酸化作用的影响研究[D]. 南京: 南京农业大学, 2012.

    ZHANG Y C. Research of long term fertilization on soil acidification[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
    [23] 张晓蕊. 石灰性潮土中磷形态转化以及交换性钙对磷固定的影响[D]. 武汉: 华中农业大学, 2020

    ZHANG X R. Transformation of phosphorus speciation in A calcareous fluvo-aquic soil and effects of exchangeable calcium on phosphate fixation[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
    [24] SPOHN M, CARMINATI A, KUZYAKOV Y. Soil zymography - A novel in situ method for mapping distribution of enzyme activity in soil [J]. Soil Biology and Biochemistry, 2013, 58: 275−280. doi: 10.1016/j.soilbio.2012.12.004
    [25] NANNIPIERI P, GIAGNONI L, LANDI L, et al. Role of Phosphatase Enzymes in Soi. Phosphorus in Action, Soil Biology 26 [M]. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011: 215–243.
    [26] 王涵, 王果, 黄颖颖, 等. pH变化对酸性土壤酶活性的影响 [J]. 生态环境, 2008, 17(6):2401−2406.

    WANG H, WANG G, HUANG Y Y, et al. The effects of pH change on the activities of enzymes in an acid soil [J]. Ecology and Environment, 2008, 17(6): 2401−2406.(in Chinese)
    [27] LI J B, XIE T, ZHU H, et al. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem [J]. Geoderma, 2021, 404: 115376. doi: 10.1016/j.geoderma.2021.115376
    [28] 于宁, 关连珠, 娄翼来, 等. 施石灰对北方连作烟田土壤酸度调节及酶活性恢复研究 [J]. 土壤通报, 2008, 39(4):849−851. doi: 10.3321/j.issn:0564-3945.2008.04.030

    YU N, GUAN L Z, LOU Y L, et al. Lime application regulates soil acidity and restores enzyme activities in the fields cultivated continuously with tobacco, Northern China [J]. Chinese Journal of Soil Science, 2008, 39(4): 849−851.(in Chinese) doi: 10.3321/j.issn:0564-3945.2008.04.030
    [29] 韩晓日, 蒋海英, 郭春雷, 等. 施用新型多元素螯合肥对玉米产量、养分吸收与利用的影响 [J]. 沈阳农业大学学报, 2016, 47(2):159−165.

    HAN X R, JIANG H Y, GUO C L, et al. Effects of new chelate fertilizer on yield, nutrient uptake and nutrient use efficiency of maize [J]. Journal of Shenyang Agricultural University, 2016, 47(2): 159−165.(in Chinese)
    [30] 贾若凌, 李丽, 刘香玲, 等. 荔枝果园土壤脲酶活性与土壤肥力的关系研究 [J]. 河南农业科学, 2011, 40(6):79−81. doi: 10.3969/j.issn.1004-3268.2011.06.021

    JIA R L, LI L, LIU X L, et al. Studies on the relationship between urease activity and fertility of the soil in Litchi orchard [J]. Journal of Henan Agricultural Sciences, 2011, 40(6): 79−81.(in Chinese) doi: 10.3969/j.issn.1004-3268.2011.06.021
    [31] 丁少男, 薛萐, 刘国彬. 施肥处理对黄土丘陵区农田土壤酶活性和水溶性有机碳、氮的影响 [J]. 农业环境科学学报, 2015, 34(11):2146−2154. doi: 10.11654/jaes.2015.11.016

    DING S N, XUE S, LIU G B. Effects of fertilization on soil enzyme activities and water-soluble organic carbon and nitrogen content in farmland on hilly loess plateau [J]. Journal of Agro-Environment Science, 2015, 34(11): 2146−2154.(in Chinese) doi: 10.11654/jaes.2015.11.016
    [32] 冯慧芳, 余明, 薛立. 外源性氮磷添加及林分密度对大叶相思林土壤酶活性的影响 [J]. 生态学报, 2020, 40(14):4894−4902.

    FENG H F, YU M, XUE L. Effects of nitrogen and phosphorus additions on soil enzyme activities in Acacia auriculiformis stands under different planting densities [J]. Acta Ecologica Sinica, 2020, 40(14): 4894−4902.(in Chinese)
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  389
  • HTML全文浏览量:  166
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-08-26
  • 网络出版日期:  2022-11-29
  • 刊出日期:  2022-11-28

目录

    /

    返回文章
    返回