• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同基因型大豆苗期耐低磷性鉴定及指标筛选

王晶琴 石贵阳 杨松花 陈竹 杨通黎 马秀国

王晶琴,石贵阳,杨松花,等. 不同基因型大豆苗期耐低磷性鉴定及指标筛选 [J]. 福建农业学报,2022,37(6):702−711 doi: 10.19303/j.issn.1008-0384.2022.06.003
引用本文: 王晶琴,石贵阳,杨松花,等. 不同基因型大豆苗期耐低磷性鉴定及指标筛选 [J]. 福建农业学报,2022,37(6):702−711 doi: 10.19303/j.issn.1008-0384.2022.06.003
WANG J Q, SHI G Y, YANG S H, et al. Determination and Index Selection on Tolerance of Soybean Seedlings to Phosphorus Deficiency in Soil [J]. Fujian Journal of Agricultural Sciences,2022,37(6):702−711 doi: 10.19303/j.issn.1008-0384.2022.06.003
Citation: WANG J Q, SHI G Y, YANG S H, et al. Determination and Index Selection on Tolerance of Soybean Seedlings to Phosphorus Deficiency in Soil [J]. Fujian Journal of Agricultural Sciences,2022,37(6):702−711 doi: 10.19303/j.issn.1008-0384.2022.06.003

不同基因型大豆苗期耐低磷性鉴定及指标筛选

doi: 10.19303/j.issn.1008-0384.2022.06.003
基金项目: 国家自然科学基金项目(31860115);贵州大学培育项目 (202108)
详细信息
    作者简介:

    王晶琴(1996−),女,硕士研究生,研究方向:大豆耐低磷相关研究(E-mail:528117249@qq.com

    通讯作者:

    陈竹(1982−),女,副教授,研究方向:大豆耐低磷相关研究(E-mail:274586492@qq.com

  • 中图分类号: S 565.1

Determination and Index Selection on Tolerance of Soybean Seedlings to Phosphorus Deficiency in Soil

  • 摘要:   目的  研究不同基因型大豆苗期的耐低磷特性,筛选耐低磷鉴定指标,为耐低磷大豆育种及其在西南地区的优化应用提供参考依据。  方法  以10个大豆品种为试验材料,设置低磷胁迫和正常供磷浓度2个处理,采用营养液水培法,测定株高、叶面积、地上部和地下部生物量、根长、根体积、根表面积、叶绿素含量、光合速率、蒸腾速率等19个形态指标及生理生化指标。以各项指标的耐低磷系数为耐低磷指标,通过因子分析、隶属函数、聚类分析和灰色关联度分析相结合的方法,综合评价大豆耐低磷性,并筛选评价指标。  结果  灰色关联度分析表明地上部鲜重、蒸腾速率、地上部干重、气孔导度、叶面积、株高、茎粗和根体积与大豆耐低磷性关系密切;主成分分析和隶属函数法计算大豆耐低磷能力D值,根据D值进行聚类分析,可将10个供试大豆品种按耐低磷强弱划分为3类:耐低磷型、中度耐低磷型和弱耐低磷型。  结论  苗期磷吸收和利用能力最强的大豆品种是铁丰31号、滇86-4。地上部鲜重、蒸腾速率、地上部干重、气孔导度、叶面积、株高、茎粗和根体积是评价大豆苗期耐低磷性的首选指标。
  • 图  1  不同大豆品种耐低磷能力的系统聚类分析

    Figure  1.  Dendrogram of soybean varieties based on low-phosphorus tolerance

    表  1  不同基因型大豆苗期各单项指标的耐低磷系数

    Table  1.   Low-phosphorus tolerance coefficients of soybean varieties at seedling stage

    指标
    Index
    矮选
    Aixuan
    川豆14
    Chuandou
    14
    滇86-4
    Dian
    86-4
    汾豆62号
    Fendou
    No.62
    冀豆12号
    Jidou
    No.12
    晋豆23号
    Jindou
    No.23
    黔豆11号
    Qiandou
    No.11
    黔豆7号
    Qiandou
    No.7
    铁豆40号
    Tiedou
    No.40
    铁丰31号
    Tiefeng
    No.31
    X10.7571.0380.9990.8090.8720.7450.9830.8620.9631.088
    X20.8290.9380.9920.8851.1210.9081.1970.9940.9741.016
    X30.7930.9270.9800.9391.1480.8340.7620.8240.8490.964
    X40.6330.8100.9900.5470.8930.5640.8340.8440.8690.936
    X50.7210.8690.9690.7460.9310.7930.8420.8360.9041.030
    X60.9951.0571.3501.4301.4801.0850.9101.3261.3871.254
    X71.1041.2241.5971.5701.4751.6130.8361.0761.4321.452
    X80.7900.7881.2101.3621.4821.1660.8251.0600.9521.218
    X91.0801.0171.3760.8690.9250.9411.0251.0191.1601.446
    X100.8531.1762.1920.5150.5930.5940.9400.8081.5141.447
    X111.2911.3071.1390.6580.6230.7431.2431.0151.1971.194
    X121.2370.4860.6481.7411.5971.2890.3431.3991.1350.353
    X131.5531.3941.6362.0971.6272.0590.9711.2411.5791.353
    X141.0030.7861.0960.9040.8791.1271.0970.9800.6070.628
    X151.0010.9310.9030.9830.9381.1531.0081.0841.0701.053
    X160.7500.5640.4390.7660.9841.7870.9040.7190.9320.828
    X170.7460.6520.5870.7560.8661.0810.8260.6920.6490.667
    X180.9880.8080.9400.4571.3911.3861.0430.8321.3311.199
    X191.0181.0210.9771.1801.4161.1511.1000.9651.3551.143
    X1,株高;X2,茎粗;X3,叶面积;X4,地上部鲜重;X5,地上部干重;X6,地下部鲜重;X7,地下部干重;X8,根长;X9,根表面积;X10,根体积;X11,根平均直径;X12,根尖数;X13,根冠比;X14,光合速率;X15,胞间CO2浓度;X16,气孔导度;X17,蒸腾速率;X18,类胡萝卜素含量;X19,叶绿素含量;下表同。
    X1: Plant height; X2: Stem diameter; X3: Leaf area; X4: Shoot fresh weight; X5: Shoot dry weight; X6: Root fresh weight; X7: Root dry weight; X8: Root length; X9: Root surface area; X10: Root volume; X11: Root average diameter; X12: Root tips; X13: Root shoot ratio; X14: Photosynthetic rate; X15: Intercellular CO2 concentration; X16: Stomatal conductance; X17: Transpiration rate; X18: Carotenoid content; X19: Chlorophyll content. Same for the following tables.
    下载: 导出CSV

    表  2  各单项指标耐低磷系数的相关系数矩阵

    Table  2.   Correlation coefficient matrix of low-phosphorus tolerance coefficients on individual indices

    指标
    Index
    X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15X16X17X18X19
    X1 1
    X2 0.477 1
    X3 0.217 0.209 1
    X4 0.793** 0.615 0.371 1
    X5 0.804** 0.512 0.543 0.881** 1
    X6 0.014 0.014 0.680* 0.265 0.364 1
    X7 −0.101 −0.341 0.588 −0.082 0.273 0.631 1
    X8 −0.150 0.129 0.760* 0.049 0.306 0.779** 0.720* 1
    X9 0.668* 0.075 0.082 0.670* 0.731* 0.055 0.150 −0.051 1
    X10 0.693* 0.079 0.087 0.710* 0.664* 0.106 0.178 −0.152 0.863** 1
    X11 0.557 −0.002 −0.490 0.389 0.180 −0.561 −0.559 −0.833** 0.565 0.588 1
    X12 −0.809** −0.367 0.190 −0.538 −0.523 0.534 0.331 0.489 −0.644* −0.619 −0.758* 1
    X13 −0.583 −0.615 0.278 −0.612 −0.325 0.398 0.819** 0.540 −0.309 −0.250 −0.677* 0.641* 1
    X14 −0.511 0.038 −0.281 −0.317 −0.464 −0.373 −0.176 −0.029 −0.321 −0.217 −0.211 0.121 0.098 1
    X15 −0.346 −0.162 −0.544 −0.360 −0.211 −0.161 −0.007 −0.089 −0.100 −0.325 −0.118 0.176 0.110 −0.023 1
    X16 −0.508 −0.029 −0.175 −0.494 −0.240 −0.172 0.253 0.180 −0.377 −0.508 −0.482 0.287 0.414 0.214 0.735* 1
    X17 −0.633* 0.058 −0.097 −0.587 −0.409 −0.259 0.106 0.217 −0.597 −0.704* −0.593 0.360 0.380 0.468 0.494 0.906** 1
    X18 0.037 0.336 0.142 0.283 0.410 −0.019 0.168 0.098 0.195 0.077 −0.049 −0.092 −0.053 −0.146 0.374 0.595 0.417 1
    X19 −0.061 0.292 0.470 0.031 0.206 0.488 0.375 0.472 −0.236 −0.249 −0.492 0.378 0.285 −0.460 0.083 0.392 0.303 0.550 1
    *、**分别表示在5%和1%水平差异显著。
    * and ** indicate significant differences at P<5% and P<1%, respectively.
    下载: 导出CSV

    表  3  各综合指标主成分的特征向量及贡献率

    Table  3.   Eigenvectors and contribution rates of principal components of individual comprehensive index

    指标
    Index
    因子载荷 Factor loading
    CI1CI2CI3CI4CI5
    X10.3450.1000.078−0.017−0.052
    X20.1410.395−0.172−0.031−0.166
    X30.0130.387−0.036−0.0950.203
    X40.3180.347−0.1010.3560.199
    X50.2620.2890.256−0.085−0.389
    X6−0.0410.1300.5140.1620.019
    X7−0.115−0.1120.3210.355−0.171
    X8−0.1350.0880.354−0.4820.101
    X9−0.154−0.191−0.026−0.1920.679
    X10−0.6850.1810.126−0.1270.063
    X11−0.7800.118−0.167−0.080−0.205
    X12−0.7200.095−0.0690.2870.221
    X13−0.361−0.0490.326−0.0530.223
    X140.770−0.2460.0050.174−0.125
    X150.8030.0980.0300.3540.179
    X160.7790.175−0.1920.3000.129
    X17−0.8150.2880.1870.0510.103
    X18−0.020−0.0080.4020.1990.095
    X19−0.3030.404−0.077−0.1950.093
    特征值
    Eigenvalue
    6.8224.7422.6941.8011.253
    贡献率
    Contributive ratio/%
    35.90524.96014.1819.4796.592
    累积贡献率
    Cumulative contributive ratio/%
    35.90560.86575.04684.52591.117
    下载: 导出CSV

    表  4  各基因型大豆的综合指标值、权重、u( Xj)值及综合评价(D)

    Table  4.   Comprehensive index, index weight, u( Xj), and comprehensive evaluation value (D) of soybean cultivars

    品种 VarietyCI1CI2CI3CI4CI5u( X1)u( X2)u( X3)u( X4)u( X5)D值 D value位次 Rank
    矮选 Aixuan −0.892 −3.017 −1.120 0.575 −0.433 0.487 0.000 0.350 0.728 0.348 0.347 9
    川豆14 Chuandou 14 2.083 −1.253 −1.053 −0.221 −0.376 0.880 0.261 0.364 0.517 0.361 0.431 7
    滇86−4 Dian86−4 2.975 1.596 −1.622 0.554 2.303 0.998 0.683 0.245 0.722 1.000 0.766 2
    汾豆62号 Fendou No.62 −3.383 0.944 −2.801 −0.436 −0.563 0.158 0.586 0.000 0.460 0.317 0.294 10
    冀豆12号 Jidou No.12 −1.631 3.741 1.099 −2.174 −0.146 0.390 1.000 0.811 0.000 0.416 0.584 4
    晋豆23号 Jindou No.23 −4.580 −0.645 1.970 1.603 1.119 0.000 0.351 0.992 1.000 0.718 0.407 8
    黔豆11号 Qiandou No.11 1.570 −2.939 2.007 −1.906 0.510 0.812 0.012 1.000 0.071 0.572 0.528 5
    黔豆7号 Qiandou No.7 −0.086 −1.206 −0.514 −0.757 −0.433 0.594 0.268 0.476 0.375 0.348 0.446 6
    铁豆40号 Tiedou No.40 0.953 1.106 0.913 1.434 −1.891 0.731 0.610 0.772 0.955 0.000 0.675 3
    铁丰31号 Tiefeng No.31 2.991 1.673 1.121 1.327 −0.090 1.000 0.694 0.816 0.927 0.429 0.839 1
    权重 Weight 0.394 0.274 0.156 0.104 0.072
    下载: 导出CSV

    表  5  各指标与耐低磷系数的关联度及位次

    Table  5.   Correlation and rank on low-phosphorus tolerance coefficients of individual indices

    指标 Index关联度 γ Correlation degree γ权重 Weight位次 Rank
    株高 Plant height0.7160.0576
    茎粗 Stem diameter0.6820.0547
    叶面积 Leaf area0.7290.0585
    地上部鲜重 Shoot fresh weight0.7890.0621
    地上部干重 Shoot dry weight0.7420.0593
    地下部鲜重 Root fresh weight0.5800.04617
    地下部干重 Root dry weight0.5470.04318
    根长 Root length0.6440.05113
    根表面积 Root surface area0.6290.05015
    根体积 Root volume0.6780.0548
    根平均直径 Root average diameter0.6690.05310
    根尖数 Root tips0.6380.05014
    根冠比 Root shoot ratio0.4960.03919
    光合速率 Photosynthetic rate0.6490.05112
    胞间CO2浓度 Intercellular CO2 concentration0.6730.0539
    气孔导度 Stomatal conductance0.7360.0584
    蒸腾速率 Transpiration rat0.7750.0612
    类胡萝卜素含量 Carotenoid content0.6680.05311
    叶绿素含量 Chlorophyll content0.6190.04916
    下载: 导出CSV
  • [1] 刘萍, 董文汉, 王明君, 等. 低磷胁迫条件下大豆磷高效近等基因系主要农艺性状分析 [J]. 西南农业学报, 2018, 31(8):1553−1558.

    LIU P, DONG W H, WANG M J, et al. Analysis of main agronomic characters of soybean inbred lines with high Phosphorus-efficient at low Phosphorus conditions [J]. Southwest China Journal of Agricultural Sciences, 2018, 31(8): 1553−1558.(in Chinese)
    [2] 张秋红. 大豆低聚糖的生理功能及在食品中的应用 [J]. 粮食加工, 2005, 30(5):47−48, 58.

    ZHANG Q H. Physiological functions and applications in food of soybean oligosaccharide [J]. Grain Processing, 2005, 30(5): 47−48, 58.(in Chinese)
    [3] GRAHAM P H, VANCE C P. Legumes: Importance and constraints to greater use [J]. Plant Physiology, 2003, 131(3): 872−877. doi: 10.1104/pp.017004
    [4] 尚强民. 我国粮食消费需求增加并发生结构性变化引发大豆进口量井喷式增长 [J]. 中国粮食经济, 2005(10):15−17.

    SHANG Q M. The increase of China's grain consumption demand and structural changes have led to the blowout growth of soybean import [J]. China Grain Economy, 2005(10): 15−17.(in Chinese)
    [5] 盖钧镒. 发展我国大豆科技, 保障国内大豆供给[C]//2003中国作物学会学术年会文集. 南京, 2003: 28–34.
    [6] 徐青萍, 罗超云, 廖红, 等. 大豆不同品种对磷胁迫反应的研究 [J]. 大豆科学, 2003, 22(2):108−114.

    XU Q P, LUO C Y, LIAO H, et al. Study on the response of soybean varieties to P deficiency [J]. Soybean Science, 2003, 22(2): 108−114.(in Chinese)
    [7] CORDELL D, DRANGERT J O, WHITE S. The story of phosphorus: Global food security and food for thought [J]. Global Environmental Change, 2009, 19(2): 292−305. doi: 10.1016/j.gloenvcha.2008.10.009
    [8] 李庆逵. 现代磷肥研究的进展 [J]. 土壤学进展, 1986, 14(2):1−7.

    LI Q K. Research progress of modern phosphate fertilizer [J]. Advances in Soil Science, 1986, 14(2): 1−7.(in Chinese)
    [9] 严小龙, 张福锁. 植物营养遗传学[M]. 北京: 中国农业出版社, 1997.
    [10] 年海, 郭志华, 余让才, 等. 不同来源大豆品种耐低磷能力的评价 [J]. 大豆科学, 1998, 17(2):108−114.

    NIAN H, GUO Z H, YU R C, et al. Evaluations for low-p tolerance of soybean cultivars from different geographical origins [J]. Soybean Science, 1998, 17(2): 108−114.(in Chinese)
    [11] 曹敏建, 佟占昌, 韩明祺, 等. 磷高效利用的大豆遗传资源的筛选与评价 [J]. 作物杂志, 2001(4):22−24.

    CAO M J, TONG Z C, HAN M Q, et al. Screening and evaluation of soybean genetic resources with high phosphorus utilization efficiency [J]. Crops, 2001(4): 22−24.(in Chinese)
    [12] 童学军, 严小龙, 卢永根, 等. 广东大豆地方种质磷效率特性研究 Ⅰ. 大豆基因型磷效率特性差异及其与土壤有效磷含量的关系 [J]. 土壤学报, 1999, 36(3):404−412.

    TONG X J, YAN X L, LU Y G, et al. Study on characteristics of phosphorus efficiency of soybean native germplasm in Guangdong Province ⅰ. differences of soybean genotypes in characteristics of phosphorus efficiency and relationship between phosphorus efficiency and content of soil [J]. Acta Pedologica Sinica, 1999, 36(3): 404−412.(in Chinese)
    [13] 张丹, 宋海娜, 程浩, 等. 大豆耐低磷相关基因的定位与克隆 [J]. 遗传, 2015, 37(4):336−343.

    ZHANG D, SONG H N, CHENG H, et al. Mapping and cloning of low phosphorus tolerance genes in soybeans [J]. Hereditas, 2015, 37(4): 336−343.(in Chinese)
    [14] 陈娇, 谢小玉, 张小短, 等. 甘蓝型油菜苗期抗旱性鉴定及综合抗旱指标筛选 [J]. 中国油料作物学报, 2019, 41(5):713−722.

    CHEN J, XIE X Y, ZHANG X D, et al. Seedling drought resistance and parameter screening of rapeseed [J]. Chinese Journal of Oil Crop Sciences, 2019, 41(5): 713−722.(in Chinese)
    [15] 汪灿, 周棱波, 张国兵, 等. 酒用糯高粱资源成株期抗旱性鉴定及抗旱指标筛选 [J]. 中国农业科学, 2017, 50(8):1388−1402.

    WANG C, ZHOU L B, ZHANG G B, et al. Drought resistance identification and drought resistance indices screening of liquor-making waxy Sorghum resources at adult plant stage [J]. Scientia Agricultura Sinica, 2017, 50(8): 1388−1402.(in Chinese)
    [16] 李春红, 姚兴东, 鞠宝韬, 等. 不同基因型大豆耐荫性分析及其鉴定指标的筛选 [J]. 中国农业科学, 2014, 47(15):2927−2939.

    LI C H, YAO X D, JU B T, et al. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes [J]. Scientia Agricultura Sinica, 2014, 47(15): 2927−2939.(in Chinese)
    [17] 武辉, 侯丽丽, 周艳飞, 等. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选 [J]. 中国农业科学, 2014, 45(9):1703−1713.

    WU H, HOU L L, ZHOU Y F, et al. Analysis of chilling-tolerance and determination of chilling-tolerance evaluation indicators in cotton of different genotypes [J]. Scientia Agricultura Sinica, 2014, 45(9): 1703−1713.(in Chinese)
    [18] 马帅国, 田蓉蓉, 胡慧, 等. 粳稻种质资源苗期耐盐性综合评价与筛选 [J]. 植物遗传资源学报, 2020, 21(5):1089−1101.

    MA S G, TIAN R R, HU H, et al. Comprehensive evaluation and selection of rice(Oryza sativa japonica)germplasm for saline tolerance at seedling stage [J]. Journal of Plant Genetic Resources, 2020, 21(5): 1089−1101.(in Chinese)
    [19] 武兆云, 郭娜, 赵晋铭, 等. 大豆苗期耐低磷主成分及隶属函数分析 [J]. 大豆科学, 2012, 31(1):42−46.

    WU Z Y, GUO N, ZHAO J M, et al. Principal components and membership function analysis of low phosphate tolerance at seedling stage in soybean [J]. Soybean Science, 2012, 31(1): 42−46.(in Chinese)
    [20] 栗振义, 张绮芯, 仝宗永, 等. 不同紫花苜蓿品种对低磷环境的形态与生理响应分析 [J]. 中国农业科学, 2017, 50(20):3898−3907.

    LI Z Y, ZHANG Q X, TONG Z Y, et al. Analysis of morphological and physiological responses to low pi stress in different alfalfas [J]. Scientia Agricultura Sinica, 2017, 50(20): 3898−3907.(in Chinese)
    [21] 杨春婷, 张永清, 马星星, 等. 苦荞耐低磷基因型筛选及评价指标的鉴定 [J]. 应用生态学报, 2018, 29(9):2997−3007.

    YANG C T, ZHANG Y Q, MA X X, et al. Screening genotypes and identifying indicators of different Fagopyrum tataricum varieties with low phosphorus tolerance [J]. Chinese Journal of Applied Ecology, 2018, 29(9): 2997−3007.(in Chinese)
    [22] 廖红, 李欣欣. 一种大豆水培营养液: CN108558519A[P]. 2018-09-21.
    [23] LIU L L, WANG J C, YAO L R, et al. Evaluation of low phosphorus tolerance and germplasm screening of spring wheat [J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 999−1009.
    [24] 武晓玲, 梁海媛, 杨峰, 等. 大豆苗期耐荫性综合评价及其鉴定指标的筛选 [J]. 中国农业科学, 2015, 48(13):2497−2507.

    WU X L, LIANG H Y, YANG F, et al. Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean [J]. Scientia Agricultura Sinica, 2015, 48(13): 2497−2507.(in Chinese)
    [25] 梁晓, 祁永, 吝亚杰, 等. 应用综合指标法和灰色关联度法对10个紫花苜蓿品种进行耐盐性评价 [J]. 作物杂志, 2017(4):44−49.

    LIANG X, QI Y, LIN Y J, et al. Comprehensive evaluation on salinity performance of 10 alfalfa varieties by comprehensive index and gray correlation methods [J]. Crops, 2017(4): 44−49.(in Chinese)
    [26] 管志勇, 陈发棣, 滕年军, 等. 5种菊花近缘种属植物的耐盐性比较 [J]. 中国农业科学, 2010, 43(4):787−794.

    GUAN Z Y, CHEN F D, TENG N J, et al. Study on the NaCl tolerance in five plant species from Dendranthema and its relatives [J]. Scientia Agricultura Sinica, 2010, 43(4): 787−794.(in Chinese)
    [27] DU E Z, TERRER C, PELLEGRINI A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation [J]. Nature Geoscience, 2020, 13(3): 221−226.
    [28] 展晓莹, 任意, 张淑香, 等. 中国主要土壤有效磷演变及其与磷平衡的响应关系 [J]. 中国农业科学, 2015, 48(23):4728−4737.

    ZHAN X Y, REN Y, ZHANG S X, et al. Changes in olsen phosphorus concentration and its response to Phosphorus balance in the main types of soil in China [J]. Scientia Agricultura Sinica, 2015, 48(23): 4728−4737.(in Chinese)
    [29] 敖雪. 磷素对不同磷效率基因型大豆的影响[D]. 沈阳: 沈阳农业大学, 2009.

    AO X. Effects of phosphorus on soybean cultivars with different phosphorus efficiency[D]. Shenyang: Shenyang Agricultural University, 2009. (in Chinese)
    [30] VAN DE WIEL C C M, VAN DER LINDEN C G, SCHOLTEN O E. Improving phosphorus use efficiency in agriculture: Opportunities for breeding [J]. Euphytica, 2016, 207(1): 1−22. doi: 10.1007/s10681-015-1572-3
    [31] ZHOU J, XIE J N, LIAO H, et al. Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean [J]. Physiologia Plantarum, 2014, 150(2): 194−204.
    [32] ZENG H Q, ZHU Y Y, HUANG S Q, et al. Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L. ) [J]. Journal of Plant Physiology, 2010, 167(15): 1289−1297. doi: 10.1016/j.jplph.2010.04.017
    [33] NIU Y F, CHAI R S, JIN G L, et al. Responses of root architecture development to low phosphorus availability: A review [J]. Annals of Botany, 2012, 112(2): 391−408. doi: 10.1093/aob/mcs285
    [34] 刘海旭, 吴俊江, 王金生, 等. 大豆耐低磷研究进展 [J]. 大豆科学, 2017, 36(4):639−644.

    LIU H X, WU J J, WANG J S, et al. Progress of research on tolerance to low-phosphorus stress in soybean [J]. Soybean Science, 2017, 36(4): 639−644.(in Chinese)
    [35] 陈俊意, 徐莉. 玉米苗期磷效率的相关和通径分析 [J]. 西南师范大学学报(自然科学版), 2008, 33(5):82−85.

    CHEN J Y, XU L. Correlation and path analysis of relative biologic characters and phosphorus efficiency in seedling of maize [J]. Journal of Southwest China Normal University (Natural Science Edition), 2008, 33(5): 82−85.(in Chinese)
    [36] 钟鹏, 吴俊江, 刘丽君, 等. 低磷和干旱胁迫对不同基因型大豆光合生理特性的影响 [J]. 大豆科学, 2009, 28(5):806−810.

    ZHONG P, WU J J, LIU L J, et al. Effects of phosphorus deficiency and drought stress on photosynthetic characters in different genotypic soybeans [J]. Soybean Science, 2009, 28(5): 806−810.(in Chinese)
    [37] 李青松. 大豆磷高效品种的筛选及磷高效生理机制的研究[D]. 郑州: 河南农业大学, 2006.

    LI Q S. Study on screening of soybean cultivars with high phosphorus efficiency and its physiological mechanism[D]. Zhengzhou: Henan Agricultural University, 2006. (in Chinese)
    [38] 张淼, 赵书岗, 耿丽平, 等. 缺磷对不同作物根系形态及体内养分浓度的影响 [J]. 植物营养与肥料学报, 2013, 19(3):577−585.

    ZHANG M, ZHAO S G, GENG L P, et al. Effects of phosphorus deficiency on root morphology and nutrients concentrations of different crops [J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 577−585.(in Chinese)
    [39] 任立飞, 张文浩, 李衍素. 低磷胁迫对黄花苜蓿生理特性的影响 [J]. 草业学报, 2012, 21(3):242−249.

    REN L F, ZHANG W H, LI Y S. Effect of phosphorus deficiency on physiological properties of Medicago falcata [J]. Acta Prataculturae Sinica, 2012, 21(3): 242−249.(in Chinese)
    [40] 谢甫绨, 孙海姝, 张惠君, 等. 磷素对不同品质类型大豆光合生理的影响 [J]. 大豆科学, 2012, 31(2):232−236.

    XIE F T, SUN H S, ZHANG H J, et al. Effect of P2O5 on photosynthetic physiology of soybean cultivars with different quality types [J]. Soybean Science, 2012, 31(2): 232−236.(in Chinese)
    [41] JACOB J, LAWLOR D W. Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants [J]. Journal of Experimental Botany, 1991, 42(8): 1003−1011. doi: 10.1093/jxb/42.8.1003
    [42] 丁玉川, 陈明昌, 程滨, 等. 不同大豆品种磷吸收利用特性比较研究 [J]. 西北植物学报, 2005, 25(9):1791−1797.

    DING Y C, CHEN M C, CHENG B, et al. Phosphorous uptakes and uses of different soybean varieties [J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(9): 1791−1797.(in Chinese)
    [43] 刘渊, 李喜焕, 王瑞霞, 等. 大豆耐低磷指标筛选与耐低磷品种鉴定 [J]. 中国农业科技导报, 2015, 17(4):30−41.

    LIU Y, LI X H, WANG R X, et al. Screen indexes for soybean tolerance to phosphorus deficiency and identification of low phosphorus tolerant soybean cultivars [J]. Journal of Agricultural Science and Technology, 2015, 17(4): 30−41.(in Chinese)
    [44] 王英, 李喜焕, 张彩英. 河北大豆地方品种耐低磷种质筛选 [J]. 大豆科学, 2009, 28(4):588−594.

    WANG Y, LI X H, ZHANG C Y. Screening of low-P tolerant soybean landraces from Hebei growing-areas [J]. Soybean Science, 2009, 28(4): 588−594.(in Chinese)
    [45] 张美俊, 乔治军, 杨武德, 等. 不同糜子品种对低氮胁迫的生物学响应 [J]. 植物营养与肥料学报, 2014, 20(3):661−669.

    ZHANG M J, QIAO Z J, YANG W D, et al. Biological response of different cultivars of millet to low nitrogen stress [J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 661−669.(in Chinese)
    [46] 张恩和, 张新慧, 王惠珍. 不同基因型春蚕豆对磷胁迫的适应性反应 [J]. 生态学报, 2004, 24(8):1589−1593.

    ZHANG E H, ZHANG X H, WANG H Z. Adaptable effects of phosphorus stress on different genotypes of faba-bean [J]. Acta Ecologica Sinica, 2004, 24(8): 1589−1593.(in Chinese)
    [47] 郑金凤, 米少艳, 婧姣姣, 等. 小麦代换系耐低磷生理性状的主成分分析及综合评价 [J]. 中国农业科学, 2013, 46(10):1993.

    ZHENG J F, MI S Y, JING J J, et al. Principal component analysis and comprehensive evaluation on physiological traits of tolerance to low Phosphorus stress in wheat substitution [J]. Scientia Agricultura Sinica, 2013, 46(10): 1993.(in Chinese)
    [48] 赵化田. 小麦耐低磷基因型筛选及磷效率相关性状QTL定位[D]. 雅安: 四川农业大学, 2011.

    ZHAO H T. Screening of low phosphorus tolerant wheat genotypes and QTL mapping of phosphorus efficency related traits in wheat[D]. Yaan: Sichuan Agricultural University, 2011. (in Chinese)
    [49] 张吉海, 高世斌, 潘光堂. 玉米苗期耐低磷基因型的筛选与鉴定 [J]. 玉米科学, 2006, 14(5):20−25.

    ZHANG J H, GAO S B, PAN G T. Screening and identification on maize inbred lines with tolerance to low-phosphorus stress at seedling stage [J]. Journal of Maize Sciences, 2006, 14(5): 20−25.(in Chinese)
    [50] 刘灵, 廖红, 王秀荣, 等. 不同根构型大豆对低磷的适应性变化及其与磷效率的关系 [J]. 中国农业科学, 2008, 41(4):1089−1099.

    LIU L, LIAO H, WANG X R, et al. Adaptive changes of soybean genotypes with different root architectures to low phosphorus availability as related to phosphorus efficiency [J]. Scientia Agricultura Sinica, 2008, 41(4): 1089−1099.(in Chinese)
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  399
  • HTML全文浏览量:  151
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 修回日期:  2022-04-23
  • 网络出版日期:  2022-08-07
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回