• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同叶面肥及水稻品种对水稻糙米重金属累积的影响

潘荣庆 何卿姮 韦昌江 黄智刚

潘荣庆,何卿姮,韦昌江,等. 不同叶面肥及水稻品种对水稻糙米重金属累积的影响 [J]. 福建农业学报,2022,37(6):712−719 doi: 10.19303/j.issn.1008-0384.2022.06.004
引用本文: 潘荣庆,何卿姮,韦昌江,等. 不同叶面肥及水稻品种对水稻糙米重金属累积的影响 [J]. 福建农业学报,2022,37(6):712−719 doi: 10.19303/j.issn.1008-0384.2022.06.004
PAN R Q, HE Q H, WEI C J, et al. Heavy Metal Accumulation in Husk-removed Grains as Affected by Foliar Fertilizer Application and Rice Variety [J]. Fujian Journal of Agricultural Sciences,2022,37(6):712−719 doi: 10.19303/j.issn.1008-0384.2022.06.004
Citation: PAN R Q, HE Q H, WEI C J, et al. Heavy Metal Accumulation in Husk-removed Grains as Affected by Foliar Fertilizer Application and Rice Variety [J]. Fujian Journal of Agricultural Sciences,2022,37(6):712−719 doi: 10.19303/j.issn.1008-0384.2022.06.004

不同叶面肥及水稻品种对水稻糙米重金属累积的影响

doi: 10.19303/j.issn.1008-0384.2022.06.004
基金项目: 广西创新驱动发展专项(桂科AA17204078)
详细信息
    作者简介:

    潘荣庆(1997−),男,硕士,研究方向:农业面源污染与生态治理(E-mail:1524395275@qq.com

    通讯作者:

    黄智刚(1971−),男,博士,副教授,研究方向:农业资源利用(E-mail:19950048@gxu.edu.cn

  • 中图分类号: S 511

Heavy Metal Accumulation in Husk-removed Grains as Affected by Foliar Fertilizer Application and Rice Variety

  • 摘要:   目的  研究不同水稻品种和叶面肥对水稻糙米富集多种重金属的影响。  方法  采用田间试验的方法,选用10个广西当地主要种植的晚稻品种,每个品种设置喷施硒肥(Se)、硅肥(Si)和CK施肥处理。测定和分析水稻糙米重金属As、Cd、Pb、Cr含量差异,比较不同晚稻品种As、Cd、Pb、Cr累积特性,筛选出适合广西当地种植的重金属低累积晚稻品种,同时分析出两种叶面肥对水稻糙米累积重金属的影响。  结果  不同水稻品种糙米对As、Cd、Pb、Cr的累积存在明显差异。其中桂育12糙米Cd含量最低,裕丰优158糙米As含量最低,荃香优822糙米Cr含量最低;10个水稻品种中,仅有华浙优1号检测出Pb含量。4种重金属在水稻糙米中富集能力大小依次为:Cd>As>Cr>Pb。喷洒硒肥(Se)和硅肥(Si)后水稻糙米Cd含量分别下降了44.8%和44.2%。富集系数分别降低了47.2%和47.4%。喷洒硅肥(Si)后,水稻糙米As含量及富集系数相较于对照处理分别降低了30.0%和19.0%。喷洒叶面肥后对水稻糙米Pb含量影响较小。  结论  选用品种桂育12在广西当地种植可以很好地降低糙米重金属中Cd的累积,选用裕丰优158可以很好地降低糙米中重金属As的累积,施用硅肥(Si)可显著降低As在水稻糙米中的累积,叶面喷施硒肥(Se)和硅肥(Si)均可以很好地阻控在水稻糙米中Cd的富集。
  • 图  1  不同品种水稻糙米重金属含量

    不同小写字母表示不同品种处理间差异显著(P<0.05)。

    Figure  1.  Heavy metals in husk-removed grains of different rice varieties

    Data with different lowercase letters indicate significant differences between different varieties (P<0.05).

    表  1  供试水稻品种

    Table  1.   Rice varieties under study

    品种 Varieties编号Number来源Source
    桂育12
    Guiyu 12
    D-1 当地农资店
    Local agricultural materials store
    华浙优1号
    Huazheyou No.1
    D-2 广西农科院提供
    Provided by Guangxi Academy of Agricultural Sciences
    68优金占
    68 Youjinzhang
    D-3
    凯丰优158
    Kaifengyou 158
    D-4
    裕丰优158
    Yufengyou 158
    D-5
    y两优143
    y Lliangyou 143
    D-6
    荃香优822
    Quanxiangyou 822
    D-7
    又香优龙丝苗
    Youxiang youlongsimiao
    D-8
    又香优雅丝苗
    Youxiang youyasimiao
    D-9
    野香优明月丝苗
    Yexiangyou mingyuesimiao
    D-10
    下载: 导出CSV

    表  2  不同处理水稻糙米Cd含量

    Table  2.   Cd content of brown rice under treatments

    品种
    Varieties
    CK 处理A Treatment A 处理B Treatment B
    含量
    Content/(mg·kg−1
    含量
    Content/(mg·kg−1
    降幅
    Decline/%
    含量
    Content/(mg·kg−1
    降幅
    Decline/%
    D-10.1350±0.0173 a 0.0900±0.0141 b−33.3 0.0825±0.0150 b−38.9
    D-20.1500±0.0365 a0.0950±0.0054 a−36.70.0975±0.0450 a−35.0
    D-30.1675±0.005 a0.0975±0.025 b−41.80.0975±0.0125 b−41.8
    D-40.2350±0.0369 a0.1025±0.0095 b−56.40.1025±0.020 b−56.4
    D-50.1500±0.0141 a0.0975±0.0325 b−35.00.0950±0.0173 b−36.7
    D-60.1575±0.0411 a0.1275±0.0530 a−19.00.1400±0.0315 a−11.1
    D-70.1700±0.0336 a0.1000±0.0291 b−41.20.0850±0.0054 b−50.0
    D-80.1675±0.0221 a0.1050±0.0253 b−37.30.0975±0.0170 b−41.8
    D-90.2275±0.0403 a0.0825±0.0093 b−63.70.0950±0.0191 b−58.2
    D-100.2520±0.0346 a0.1025±0.0184 b−59.30.1175±0.0330 b−53.4
    平均值 Average0.1812±0.047 a0.1000±0.0254 b−44.80.1010±0.0264 b−44.3
    同行数据后不同小写字母表示不同处理间差异显著(P<0.05),下同。
    Data with different letters on the same column indicate significant difference between different varieties (P<0.05). Same for the following tables.
    下载: 导出CSV

    表  3  不同处理水稻糙米As含量

    Table  3.   As content of brown rice from different treatment groups

    品种
    Varieties
    CK 处理A Treatment A 处理B Treatment B
    含量
    Content/(mg·kg−1
    含量
    Content/(mg·kg−1
    降幅
    Decline/%
    含量
    Content/(mg·kg−1
    降幅
    Decline/%
    D-10.3125±0.0298 a 0.2250±0.0443 b−28.0 0.1425±0.0614 c−54.4
    D-20.2800±0.0182 a0.2450±0.0732 a−12.50.1950±0.0983 a−30.4
    D-30.2625±0.015 a0.2025±0.0222 ab−22.90.1725±0.0670 b−34.3
    D-40.2275±0.0394 a0.1925±0.0355 a−15.40.1675±0.1092 a−26.4
    D-50.2000±0.0483 a0.2325±0.0386 a16.30.1800±0.0680 a−10.0
    D-60.2375±0.1105 a0.1900±0.0495 a−20.00.1675±0.0570 a−29.5
    D-70.2200±0.0270 a0.1950±0.0793 a−11.40.1800±0.0742 a−18.2
    D-80.2625±0.0531 a0.2250±0.0544 a−14.30.1825±0.0680 a−30.5
    D-90.3950±0.0369 a0.2850±0.0420 a−27.80.2650±0.1283 a−32.9
    D−100.2450±0.0412 a0.1975±0.0872 a−19.40.1975±0.0580 a−19.4
    平均值 Average0.2643±0.068 a0.2195±0.0572 b−17.10.1850±0.07845 c−30.0
    下载: 导出CSV

    表  4  不同处理水稻糙米Pb含量

    Table  4.   Pb content of brown rice from different treatment groups

    品种
    Varieties
    CK 处理A Treatment A 处理B Treatment B
    含量
    Content/(mg·kg−1
    含量
    Content/(mg·kg−1
    降幅
    Decline/%
    含量
    Content/(mg·kg−1
    降幅
    Decline/%
    D-10.0010±0 a 0.0010±0 a0 0.0168±0.031 a1580.0
    D-20.0268±0.0516 a0.0010±0 a−96.30.0010±0 a−96.3
    D-30.0010±0 a0.0010±0 a00.0010±0 a0.0
    D-40.0010±0 a0.0010±0 a00.0010±0 a0.0
    D-50.0010±0 a0.0010±0 a00.0010±0 a0.0
    D-60.0010±0 a0.0010±0 a00.0010±0 a0.0
    D-70.0010±0 a0.0010±0 a00.0010±0 a0.0
    D-80.0010±0 a0.0010±0 a00.0010±0 a0.0
    D-90.0010±0 a0.0010±0 a00.0010±0 a0.0
    D-100.0010±0 a0.0010±0 a00.0010±0 a0.0
    平均值 Average0.0035±0.016 a0.0010±0 a−72.10.0025±0.010 a−27.9
    下载: 导出CSV

    表  5  不同处理水稻糙米Cr含量

    Table  5.   Cr content of brown rice from different treatment groups

    品种
    Varieties
    CK 处理A Treatment A 处理B Treatment B
    含量
    Content/(mg·kg−1
    含量
    Content/(mg·kg−1
    降幅
    Decline/%
    含量
    Content/(mg·kg−1
    降幅
    Decline/%
    D-10.0051±0.0082 a 0.0144±0.0149 a182.4 0.0178±0.0217 a249.0
    D-20.0097±0.0120 a0.0335±0.045 a245.40.0070±0.0119 a−27.8
    D-30.0051±0.0081 a0.0341±0.0421 a568.60.0248±0.0307 a386.3
    D-40.0226±0.0284 a0.0741±0.1362 a227.90.0315±0.0523 a39.4
    D-50.0166±0.0109 a0.0224±0.0078 a34.90.0361±0.0512 a117.5
    D-60.0103±0.0127 a0.0076±0.0082 a−26.20.0173±0.0266 a68.0
    D-70.0046±0.0071 a0.0201±0.0134 a337.00.0049±0.0078 a6.5
    D-80.0521±0.0452 a0.0123±0.0076 a−76.40.0227±0.0375 a−56.4
    D-90.0339±0.0241 a0.0102±0.0065 a−69.90.0171±0.0207 a−49.6
    D-100.0253±0.0422 a0.0291±0.0504 a15.00.0039±0.0057 a−84.6
    平均值 Average0.0185±0.025 a0.0257±0.0481a39.10.0183±0.0290a−1.2
    下载: 导出CSV

    表  6  不同品种水稻糙米重金属的富集系数

    Table  6.   Enrichment coefficients on heavy metals in brown rice of different varieties

    品种
    Varieties
    CdAsPbCr
    D-10.06010.02290.000030.0001
    D-20.06840.02050.000890.0001
    D-30.09010.01870.000040.0001
    D-40.10650.01630.000030.0003
    D-50.06770.01510.000030.0002
    D-60.07330.01690.000030.0001
    D-70.07670.01640.000030.0001
    D-80.07840.02080.000030.0007
    D-90.10560.02860.000040.0005
    D-100.11780.01900.000030.0003
    下载: 导出CSV

    表  7  不同处理对水稻糙米重金属富集系数的影响

    Table  7.   Enrichment coefficients on heavy metals in brown rice from different treatment groups

    处理
    Treatment
    富集系数BCF
    CdAsPbCr
    CK0.0844 a0.0195 a0.00012 a0.0003 a
    处理A Treatment A0.0446 b0.0186 a0.00003 a0.0004 a
    处理B Treatment B0.0444 b0.0158 b0.00009 a0.0003 a
    注:同列数据后不同小写字母表示差异显著(P<0.05)。
    Note: Data with different letters on same column indicate significant difference at P<0.05.
    下载: 导出CSV
  • [1] 周显, 韩毅, 陈霞, 等. 基于文献计量的土壤污染研究趋势分析 [J]. 长江科学院院报, 2021, 38(12):53−59.

    ZHOU X, HAN Y, CHEN X, et al. Trends of soil pollution research based on bibliometric analysis [J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(12): 53−59.(in Chinese)
    [2] 王玉军, 刘存, 周东美, 等. 客观地看待我国耕地土壤环境质量的现状: 关于《全国土壤污染状况调查公报》中有关问题的讨论和建议 [J]. 农业环境科学学报, 2014, 33(8):1465−1473.

    WANG Y J, LIU C, ZHOU D M, et al. A critical view on the status quo of the farmland soil environmental quality in china: discussion and suggestion of relevant issues on report on the national general survey of soil contamination [J]. Journal of Agro-Environment Science, 2014, 33(8): 1465−1473.(in Chinese)
    [3] 全国土壤污染状况调查公报[J]. 中国环保产业, 2014(5): 10-11.

    Bulletin of the national survey of soil pollution[J]. China Environmental Protection Industry, 2014(5): 10-11. (in Chinese)
    [4] 宋波, 杨子杰, 张云霞, 等. 广西西江流域土壤镉含量特征及风险评估 [J]. 环境科学, 2018, 39(4):1888−1900.

    SONG B, YANG Z J, ZHANG Y X, et al. Accumulation of Cd and its risks in the soils of the Xijiang River drainage basin in Guangxi [J]. Environmental Science, 2018, 39(4): 1888−1900.(in Chinese)
    [5] 程菁靓, 赵龙, 杨彦, 等. 我国长江中下游水稻产区铅污染分区划分方法研究 [J]. 农业环境科学学报, 2019, 38(1):70−78.

    CHENG J L, ZHAO L, YANG Y, et al. Classification methods for typical lead-contaminated rice production areas of the middle and Lower Yangtze River in China [J]. Journal of Agro-Environment Science, 2019, 38(1): 70−78.(in Chinese)
    [6] WU H P, LAI C, ZENG G M, et al. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: A review [J]. Critical Reviews in Biotechnology, 2017, 37(6): 754−764. doi: 10.1080/07388551.2016.1232696
    [7] 文典, 江棋, 李蕾, 等. 重金属污染高风险农用地水稻安全种植技术研究 [J]. 生态环境学报, 2020, 29(3):624−628.

    WEN D, JIANG Q, LI L, et al. Study on safe planting technology of rice in high risk farmland of heavy metal pollution [J]. Ecology and Environmental Sciences, 2020, 29(3): 624−628.(in Chinese)
    [8] 薛涛, 廖晓勇, 王凌青, 等. 镉污染农田不同水稻品种镉积累差异研究 [J]. 农业环境科学学报, 2019, 38(8):1818−1826.

    XUE T, LIAO X Y, WANG L Q, et al. Cadmium accumulation in different rice cultivars from cadmium-polluted paddy fields [J]. Journal of Agro-Environment Science, 2019, 38(8): 1818−1826.(in Chinese)
    [9] JIANG S L, SHI C H, WU J G. Studies on mineral nutrition and safety of wild rice (Oryza L. ) [J]. International Journal of Food Sciences and Nutrition, 2009, 60(S1): 139−147.
    [10] BOLAN N S, MAKINO T, KUNHIKRISHNAN A, et al. Cadmium contamination and its risk management in rice ecosystems[M]//Advances in Agronomy. Amsterdam: Elsevier, 2013: 183–273.
    [11] 张潮海, 华村章, 邓汉龙, 等. 水稻对污染土壤中镉、铅、铜、锌的富集规律的探讨 [J]. 福建农业学报, 2003, 18(3):147−150.

    ZHANG C H, HUA C Z, DENG H L, et al. Investigation on the enrichment of Cd, Pb, Cu and Zn by rice in the field near a smelting plant [J]. Fujian Journal of Agricultural Sciences, 2003, 18(3): 147−150.(in Chinese)
    [12] YANG Y J, CHEN J M, HUANG Q N, et al. Can Liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils [J]. Chemosphere, 2018, 193: 547−556. doi: 10.1016/j.chemosphere.2017.11.061
    [13] 陈喆, 铁柏清, 雷鸣, 等. 施硅方式对稻米镉阻隔潜力研究 [J]. 环境科学, 2014, 35(7):2762−2770.

    CHEN Z, TIE B Q, LEI M, et al. Phytoexclusion potential studies of Si fertilization modes on rice cadmium [J]. Environmental Science, 2014, 35(7): 2762−2770.(in Chinese)
    [14] 谭周磁, 陈嘉勤, 薛海霞. 硒 (Se)对降低水稻重金属Pb, Cd, Cr污染的研究 [J]. 湖南师范大学自然科学学报, 2000, 23(3):80−83.

    TAN Z C, CHEN J Q, XUE H X. Studies on the pole of selenium (Se) in decreasing Pb, Cd and Cr pollution to rice [J]. Journal of Natural Science of Hunan Normal University, 2000, 23(3): 80−83.(in Chinese)
    [15] 方勇, 陈曦, 陈悦, 等. 外源硒对水稻籽粒营养品质和重金属含量的影响 [J]. 江苏农业学报, 2013, 29(4):760−765.

    FANG Y, CHEN X, CHEN Y, et al. Effects of exogenous selenium on nutritional quality and heavy metal content of rice grain [J]. Jiangsu Journal of Agricultural Sciences, 2013, 29(4): 760−765.(in Chinese)
    [16] 王世华, 罗群胜, 刘传平, 等. 叶面施硅对水稻籽实重金属积累的抑制效应 [J]. 生态环境, 2007, 16(3):875−878.

    WANG S H, LUO Q S, LIU C P, et al. Effects of leaf application of nanometer silicon to the accumulation of heavy metals in rice grains [J]. Ecology and Environment, 2007, 16(3): 875−878.(in Chinese)
    [17] 周歆, 周航, 胡淼, 等. 不同杂交水稻品种糙米中重金属Cd、Zn、As含量的差异研究 [J]. 中国农学通报, 2013, 29(11):145−150.

    ZHOU X, ZHOU H, HU M, et al. The difference of Cd, Zn and As accumulation in different hybrid rice cultivars [J]. Chinese Agricultural Science Bulletin, 2013, 29(11): 145−150.(in Chinese)
    [18] 王林友, 竺朝娜, 王建军, 等. 水稻镉、铅、砷低含量基因型的筛选 [J]. 浙江农业学报, 2012, 24(1):133−138.

    WANG L Y, ZHU C N, WANG J J, et al. Screening for rice(Oryza sativa L. ) genotyeps with lower Cd, Pb and As contents [J]. Acta Agriculturae Zhejiangensis, 2012, 24(1): 133−138.(in Chinese)
    [19] 林小兵, 周利军, 王惠明, 等. 不同水稻品种对重金属的积累特性 [J]. 环境科学, 2018, 39(11):5198−5206.

    LIN X B, ZHOU L J, WANG H M, et al. Accumulation of heavy metals in different rice varieties [J]. Environmental Science, 2018, 39(11): 5198−5206.(in Chinese)
    [20] 唐非, 雷鸣, 唐贞, 等. 不同水稻品种对镉的积累及其动态分布 [J]. 农业环境科学学报, 2013, 32(6):1092−1098.

    TANG F, LEI M, TANG Z, et al. Accumulation characteristic and dynamic distribution of Cd in different genotypes of rice(Oryza sativa L. ) [J]. Journal of Agro-Environment Science, 2013, 32(6): 1092−1098.(in Chinese)
    [21] 王宇豪, 杨力, 康愉晨, 等. 镉污染大田条件下不同品种水稻镉积累的特征及影响因素 [J]. 环境科学, 2021, 42(11):5545−5553.

    WANG Y H, YANG L, KANG Y C, et al. Characteristics and influencing factors of cadmium accumulation in different rice varieties under cadmium contaminated field conditions [J]. Environmental Science, 2021, 42(11): 5545−5553.(in Chinese)
    [22] 陈慧茹, 董亚玲, 王琦, 等. 重金属污染土壤中Cd、Cr、Pb元素向水稻的迁移累积研究 [J]. 中国农学通报, 2015, 31(12):236−241.

    CHEN H R, DONG Y L, WANG Q, et al. Distribution and transportation of Cd, Cr, Pb in rice with contamination in soil [J]. Chinese Agricultural Science Bulletin, 2015, 31(12): 236−241.(in Chinese)
    [23] 李林峰, 王艳红, 李义纯, 等. 调理剂耦合水分管理对双季稻镉和铅累积的阻控效应 [J]. 环境科学, 2022, 43(1):472−480.

    LI L F, WANG Y H, LI Y C, et al. Inhibitory effects of soil amendment coupled with water management on the accumulation of Cd and Pb in double-cropping rice [J]. Environmental Science, 2022, 43(1): 472−480.(in Chinese)
    [24] 张宇鹏, 谭笑潇, 陈晓远, 等. 无机硅叶面肥及土壤调理剂对水稻铅、镉吸收的影响 [J]. 生态环境学报, 2020, 29(2):388−393.

    ZHANG Y P, TAN X X, CHEN X Y, et al. Effects of inorganic silicon foliar fertilizer and soil conditioner on plumbum and cadmium absorption in rice [J]. Ecology and Environmental Sciences, 2020, 29(2): 388−393.(in Chinese)
    [25] 贾倩, 胡敏, 张洋洋, 等. 硅钙肥对水稻吸收铅、镉的影响研究 [J]. 环境科学与技术, 2017, 40(6):24−30.

    JIA Q, HU M, ZHANG Y Y, et al. Effect of silicon-calcium fertilizer on Pb and Cd absorption by rice in heavy metal polluted farmland [J]. Environmental Science & Technology, 2017, 40(6): 24−30.(in Chinese)
    [26] 戴青云, 刘代欢, 王德新, 等. 硅对水稻生长的影响及其缓解镉毒害机理研究进展 [J]. 中国农学通报, 2020, 36(5):86−92.

    DAI Q Y, LIU D H, WANG D X, et al. A review on silicon: Effect on rice growth and its mechanism of relieving cadmium toxicity [J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 86−92.(in Chinese)
    [27] 张世杰, 付洁, 王晓美, 等. 叶面施硅对水稻吸收和转运无机砷和甲基砷的影响 [J]. 农业环境科学学报, 2018, 37(7):1529−1536.

    ZHANG S J, FU J, WANG X M, et al. Effects of foliar application of silicon on uptake and transport of inorganic and methyl arsenic in rice [J]. Journal of Agro-Environment Science, 2018, 37(7): 1529−1536.(in Chinese)
  • 加载中
图(1) / 表(7)
计量
  • 文章访问数:  949
  • HTML全文浏览量:  419
  • PDF下载量:  409
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-08
  • 修回日期:  2022-03-05
  • 网络出版日期:  2022-08-07
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回