• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高知芽孢杆菌Cytobacillus kochii H产蛋白酶条件优化及抑菌效应

王学文 于存 潘洪祥

王学文,于存,潘洪祥. 高知芽孢杆菌Cytobacillus kochii H产蛋白酶条件优化及抑菌效应 [J]. 福建农业学报,2023,38(1):47−57 doi: 10.19303/j.issn.1008-0384.2023.01.007
引用本文: 王学文,于存,潘洪祥. 高知芽孢杆菌Cytobacillus kochii H产蛋白酶条件优化及抑菌效应 [J]. 福建农业学报,2023,38(1):47−57 doi: 10.19303/j.issn.1008-0384.2023.01.007
WANG X W, YU C, PAN H X. Process Optimization and Antimicrobial Effect of Cytobacillus kochii H Protease [J]. Fujian Journal of Agricultural Sciences,2023,38(1):47−57 doi: 10.19303/j.issn.1008-0384.2023.01.007
Citation: WANG X W, YU C, PAN H X. Process Optimization and Antimicrobial Effect of Cytobacillus kochii H Protease [J]. Fujian Journal of Agricultural Sciences,2023,38(1):47−57 doi: 10.19303/j.issn.1008-0384.2023.01.007

高知芽孢杆菌Cytobacillus kochii H产蛋白酶条件优化及抑菌效应

doi: 10.19303/j.issn.1008-0384.2023.01.007
基金项目: 国家自然科学基金项目( 32160375);黔科合平台人才项目([2018]5261)
详细信息
    作者简介:

    王学文(1998−),男,硕士研究生,研究方向:马尾松立枯病防治(E-mail:2252346912@qq.com

    通讯作者:

    于存(1988−),男,博士,副教授,研究方向:植物病理(E-mail:chifengyucun@163.com

  • 中图分类号: Q 939

Process Optimization and Antimicrobial Effect of Cytobacillus kochii H Protease

  • 摘要:   目的  对筛选到具有抑菌效果且产蛋白酶的菌株H进行分类地位的确定,同时对其产蛋白酶的条件进行优化,以期为其在植物病害防治上的应用奠定基础。  方法  通过生理生化、电子显微镜扫描及16sRNA测序相结合的方法明确菌株H的分类地位;通过单因素和正交试验对菌株H产蛋白酶条件进行优化,并检测其优化前后对病原真菌的抑菌效果。  结果  菌株H鉴定为高知芽孢杆菌(Cytobacillus kochii);菌株H产蛋白酶的优化条件为:pH8.0、葡萄糖20.0 g·L−1、蛋白胨8.0 g·L−1、MgSO4 1.0 g·L−1、CaSO4·2H2O 0.1 g·L−1,在装有50 mL发酵培养基的250 mL三角瓶中接种2.5 mL108 CFU·mL−1的种子液,培养24 h后蛋白酶活力达到402.2 U·mL−1,较初始培养条件下的蛋白酶活力提高13.92倍;优化后菌株H对尖孢镰刀菌(Fusarium oxysporum)和辣椒疫霉病菌(Phytophthora capsici)的抑菌率分别为67.32%和44.87%,较优化前抑菌率提升值分别为9.15%和12.82%。  结论  明确菌株H为高知芽孢杆菌(C. kochii),优化了高知芽孢杆菌产蛋白酶条件及抑菌效果。
  • 图  1  菌株H形态学特征

    A:革兰氏染色;B:菌落形态;C:菌株形态。

    Figure  1.  Morphological characteristics of C. kochii H

    A:Gram's stain, B:Colony morphology, C:Strain morphology.

    图  2  H菌株与其他相近菌株基于16S rRNA基因序列的系统发育树

    Figure  2.  Phylogenetic trees of C. kochii H and other similar strains based on 16S rRNA gene sequence

    图  3  高知芽孢杆菌(C. kochii) H产蛋白酶活性检测

    A:对照,B:箭头所示为产蛋白酶透明圈。

    Figure  3.  Determination of C. kochii H protease activity

    A: control; arrow in B: transparent circle produced by protease.

    图  4  培养时间对高知芽孢杆菌(C. kochii) H产蛋白酶能力的影响

    Figure  4.  Effect of C. kochii H culture time on protease production

    图  5  单因素和培养基成分优化对高知芽孢杆菌(C. kochii) H产蛋白酶活力的影响

    不同小写字母表示差异显著(P<0.05)。下同。

    Figure  5.  Effects of single factor and medium optimization on C. kochii H protease activity

    Different lowercase letters indicate significant difference (P<0.05).Same for below.

    图  6  高知芽孢杆菌(C. kochii) H产蛋白酶正交试验验证

    Figure  6.  Verification of orthogonal test results on C. kochii H protease production

    图  7  高知芽孢杆菌(C. kochii) H产蛋白酶优化前后对4种病原菌的抑菌效果

    A:尖孢镰刀菌(F. oxysporum);B:脐橙青霉病菌(P. italicu); C:辣椒疫霉病菌(P. capsici); D:辣椒炭疽病菌(C. capsici); A~D为对照; E~H为优化前; J~M为优化后。

    Figure  7.  Bacteriostatic effects of C. kochii H culture broth on 4 pathogens before and after process optimization

    A: F. oxysporum; B: P. italic; C: P. capsica; D: C. capsica; Lines A-D: control; Lines E-H: before optimization; Lines J-M: after optimization.

    图  8  高知芽孢杆菌(C. kochii) H优化前后对4种植物病原真菌的抑制效果

    差异性分析对象为单个病原菌的基础抑菌率和优化抑菌率。

    Figure  8.  Inhibition effects of C. kochii H culture broth on 4 pathogens before and after process optimization

    The differential analysis targets are the basic and optimized antibacterial rates of a single pathogen.

    表  1  单因素优化设计

    Table  1.   Single factor optimization experimental design

    接种量
    Inocuiation amount/mL
    装液量
    Refilled amount/mL
    pH
    2.5205.0
    5.0306.0
    7.5507.0
    10708.0
    12.5909.0
    1511010.0
    17.5
    20
    下载: 导出CSV

    表  2  正交试验优化组合试验因子及水平

    Table  2.   Factors and levels of optimization experiment

    水平
    Level
    A:葡萄糖
    Glucose/
    (g·L−1
    B:蛋白胨
    Peptone/
    ( g·L−1
    C:Mg2+/
    ( g·L−1
    D:Ca2+/
    ( g·L−1
    11080.10.1
    215100.50.5
    320121.01.0
    下载: 导出CSV

    表  3  菌株H生理生化试验

    Table  3.   Physiological and biochemical test results on C. kochii H

    试验名称     
    Test names     
    试验现象     
    Experimental phenomenon     
    试验结果
    Results
    甲基红试验 Methylred test 反应液呈黄色 The reaction solution is yellow
    革兰氏染色 Gram staining test 菌体呈紫色 The cell is purple +
    V-P试验 V-P test 培养液呈非红色 The culture medium is not red
    靛基质试验 Imdole test 反应液呈红色 The reaction solution is red +
    触酶试验 Contact enzyme test 有气泡 Bubble +
    柠檬酸盐利用试验 Citrate test 培养基呈深蓝色 The culture medium is navy blue +
    +:阳性;−:阴性。
    +: positive; −: negative.
    下载: 导出CSV

    表  4  高知芽孢杆菌(C. kochii) H产蛋白酶优化组合正交试验结果

    Table  4.   Orthogonal optimization of C. kochii H protease-producing process

    试验编号
    Test No
    因子 Factor酶活力
    Protease activity/(U·mL−1
    葡萄糖
    Glucose
    蛋白胨
    Peptone
    Mg2+Ca2+
    11111215.370
    2122251.584
    31333122.418
    4212315.460
    52231176.814
    62312100.002
    73132360.028
    83213107.773
    93321221.348
    K1129.791196.953141.048204.511
    K297.426112.05796.130170.538
    K3229.716147.923219.75381.884
    R132.29184.896123.623122.627
    优化组合
    Optimization grouping
    3131
    下载: 导出CSV

    表  5  蛋白酶抑菌验证

    Table  5.   Validation on bacteriostasis of C. kochii H protease

    病原菌
    Pathogen
    粗酶液抑菌率
    Antibacterial rate of
    crude enzyme
    solution/%
    粗酶液灭活后抑菌率
    Antibacterial rate of
    crude enzyme solution
    after inactivation/%
    尖孢镰刀菌
    Fusarium oxysporum
    21.89±1.40 a6.26±1.23 b
    辣椒疫霉病菌
    Phytophthora capsici
    36.67±3.10 a29.63±3.40 a
    脐橙青霉病菌
    Penicillium italicu
    16.90±2.70 a1.98±1.31 b
    辣椒炭疽病菌
    Colletotrichum capsici
    17.57±9.69 a0.40±0.00 b
    下载: 导出CSV
  • [1] KUDDUS M, PRAMOD W R. Recent development in production and biotechnological applications of cold-active mocrobial protease [J]. Critical Reviews in Microbiology, 2012, 38(4): 330−338. doi: 10.3109/1040841X.2012.678477
    [2] WANG Z, WANG Y, ZHENG L, et al. Isolation and characterization of an antifungal protein from Bacillus licheniformis HS10 [J]. Biochemical and Biophysical Research Communications, 2014, 454(1): 48−52. doi: 10.1016/j.bbrc.2014.10.031
    [3] 周桂旭, 文阳宣, 李新锋, 等. 重组枯草芽孢杆菌产碱性蛋白酶发酵条件优化 [J]. 山西大学学报(自然科学版), 2020, 43(2):405−412. doi: 10.13451/j.sxu.ns.2019103

    ZHOU G X, WEN Y X, LI X F, et al. Optimization of fermentation conditions for recombinant alkaline protease produced by Bacillus subtilis [J]. Journal of Shanxi University (Natural Science Edition), 2020, 43(2): 405−412.(in Chinese) doi: 10.13451/j.sxu.ns.2019103
    [4] 朱泓, 王一明, 林先贵. 一株高温蛋白酶高产菌株产酶条件的优化 [J]. 南京林业大学学报(自然科学版), 2014, 38(1):31−35.

    ZHU H, WANG Y M, LIN X G. Optimization of fermentation medium and culture condition of a thermostable protease from moderate thermophilic strain Bacillus subtilis BY25 [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(1): 31−35.(in Chinese)
    [5] 龚志立, 曹誉, 刘平, 等. 产蛋白酶菌株P12产酶条件的优化 [J]. 科技创新与生产力, 2021(4):69−71. doi: 10.3969/j.issn.1674-9146.2021.04.069

    GONG Z L, CAO Y, LIU P, et al. Optimization of enzyme production condition of a protease strain P12 [J]. Sci-Tech Innovation and Productivity, 2021(4): 69−71.(in Chinese) doi: 10.3969/j.issn.1674-9146.2021.04.069
    [6] 韩淑梅, 李欣, 张芝元, 等. 微生物角蛋白酶的特性及其应用研究进展 [J]. 微生物学通报, 2021, 48(11):4315−4326. doi: 10.13344/j.microbiol.china.210152

    HAN S M, LI X, ZHANG Z Y, et al. Research progress on the characteristics and application of microbial keratinase [J]. Microbiology China, 2021, 48(11): 4315−4326.(in Chinese) doi: 10.13344/j.microbiol.china.210152
    [7] HAMED A A, KHEDR M, ABDELRAOF M. Molecular characterization of alkaline protease-coding gene from Bacillus licheniformis MK90 mutants with biofilm inhibitory activity [J]. Egyptian Pharmaceutical Journal, 2019, 18(4): 419−433. doi: 10.4103/epj.epj_47_19
    [8] KABANOV D, KHABIPOVA N, VALEEVA L, et al. Effect of subtilisin-like proteinase of Bacillus pumilus 3-19 on Pseudomonas aeruginosa biofilms [J]. Bionanoscience, 2019, 9(2): 515−520. doi: 10.1007/s12668-019-00617-z
    [9] 张永军, 彭国雄, 方卫国, 等. 球孢白僵菌胞外蛋白酶及类枯草杆菌蛋白酶的诱导 [J]. 应用与环境生物学报, 2000, 6(2):182−186. doi: 10.3321/j.issn:1006-687X.2000.02.017

    ZHANG Y J, PENG G X, FANG W G, et al. Induction of extracellular protease and subtilisin like protease of Beauveria bassiana [J]. Chinese Journal of Applied and Environmental Biology, 2000, 6(2): 182−186.(in Chinese) doi: 10.3321/j.issn:1006-687X.2000.02.017
    [10] FAN H J, LIU Z H, ZHANG R S, et al. Functional analysis of a subtilisin-like serine gene from biocontrol fungus Trichoderma harzianum [J]. Journal of Microbiology, 2014, 52(2): 129−138. doi: 10.1007/s12275-014-3308-9
    [11] 陈瑜, 孔海深. 伯杰鉴定细菌学手册第9版简介[J]. 国外医学(微生物学分册), 1995, 18(6): 32, 48.

    CHEN Y, KONG H S. Berger’s Handbook of identification bacteriology, 9th Edition[J] Foreign Med., 1995, 18 (6): 32, 48.
    [12] 姜艳彬, 王海, 侯东军, 等. 两种快速细菌菌种鉴定方法的比较 [J]. 中国测试, 2010, 36(5):41−44.

    JIANG Y B, WANG H, HOU D J, et al. Comparison of two rapid bacteria strain identification methods [J]. China Measurement & Test, 2010, 36(5): 41−44.(in Chinese)
    [13] 中华人民共和国国家质量监督检验检疫总局. 蛋白酶制剂: GB/T23527-2009[S]. 北京: 中国标准出版社, 2009.
    [14] 王永红, 李小斌, 徐磊, 等. 产蛋白酶菌株的筛选、鉴定及水解菜粕蛋白能力 [J]. 生物资源, 2018(2):135−140.

    WANG Y H, LI X B, XU L, et al. Screening and identification of protease producing strains and their ability of hydrolysis of rapeseed protein [J]. Biotic Resources, 2018(2): 135−140.(in Chinese)
    [15] 曹慧, 张腾月, 赵龙妹, 等. 土壤中高产蛋白酶菌株产酶条件及酶学性质 [J]. 微生物学通报, 2020, 47(7):2072−2081. doi: 10.13344/j.microbiol.china.200135

    CAO H, ZHANG T Y, ZHAO L M, et al. Identification and characterization of a high protease-producing strain from soil [J]. Microbiology China, 2020, 47(7): 2072−2081.(in Chinese) doi: 10.13344/j.microbiol.china.200135
    [16] 张红岩, 张妮, 杨梦莹, 等. 拟蕈状芽孢杆菌Gxun-30产角蛋白酶液体发酵条件优化 [J]. 食品与发酵工业, 2021, 47(4):136−143. doi: 10.13995/j.cnki.11-1802/ts.025196

    ZHANG H Y, ZHANG N, YANG M Y, et al. Optimization of liquid fermentation conditions of keratinase produced by Bacillus paramycoides Gxun-30 [J]. Food and Fermentation Industries, 2021, 47(4): 136−143.(in Chinese) doi: 10.13995/j.cnki.11-1802/ts.025196
    [17] 杨城, 姚善泾, 杨志坚, 等. 一株产酸性蛋白酶菌株的筛选、鉴定及发酵条件优化 [J]. 农业生物技术学报, 2019, 27(2):371−380.

    YANG C, YAO S J, YANG Z J, et al. Screening, identification and fermentation optimization of a acidprotease strain [J]. Journal of Agricultural Biotechnology, 2019, 27(2): 371−380.(in Chinese)
    [18] 朱祥杰, 王震, 苑志欣, 等. 海洋芽孢杆菌N11-8产蛋白酶的发酵条件优化 [J]. 渔业科学进展, 2018, 39(6):155−163.

    ZHU X J, WANG Z, YUAN Z X, et al. Optimization of fermentation conditions of Bacillus sp. N11-8 on the production of protease PBN11-8 [J]. Progress in Fishery Sciences, 2018, 39(6): 155−163.(in Chinese)
    [19] 侯泽林. 从土壤中筛选碱性蛋白酶产生菌及产酶条件优化研究[D]. 哈尔滨: 东北农业大学, 2021.

    HOU Z L. Screening alkaline protease-producing bacteria from soil and optimization of enzyme-producing conditions[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese)
    [20] 周魏, 曾嵩玉, 余金凤, 等. 一株地衣芽胞杆菌产碱性蛋白酶条件优化 [J]. 微生物学通报, 2022, 49(7):2753−2766. doi: 10.13344/j.microbiol.china.211107

    ZHOU W, ZENG S Y, YU J F, et al. Optimization of alkaline protease production by a strain of Bacillus licheniformis [J]. Microbiology China, 2022, 49(7): 2753−2766.(in Chinese) doi: 10.13344/j.microbiol.china.211107
    [21] 刘新风, 牛春华, 刘香英, 等. 枯草芽孢杆菌BSG1产蛋白酶发酵条件优化 [J]. 食品工业, 2013, 34(7):1−4.

    LIU X F, NIU C H, LIU X Y, et al. The Bacillus subtilis BSG1 producing protease optimization of fermentation conditions [J]. The Food Industry, 2013, 34(7): 1−4.(in Chinese)
    [22] 曹春红, 李爽, 王海燕, 等. 解淀粉芽孢杆菌YF03产蛋白酶发酵培养基及发酵条件的优化 [J]. 饲料工业, 2020(10):23−29.

    CAO C H, LI S, WANG H Y, et al. The Bacillus amyloliquefaciens YF03 producing protease optimization of fermentation medium and fermentation conditions [J]. Feed Industry, 2020(10): 23−29.(in Chinese)
    [23] HADDAR A, HMIDET N. Alkaline proteases produced by Bacillus licheniforms PR1 grown on shrimp wastes: application in chitin extraction, chicken feather-degradation and as a dehairing agent [J]. Biotechnology and Bioprocess Engineering, 2011(16): 669−678.
    [24] 张晓云, 李宝庆, 郭庆港, 等. 枯草芽孢杆菌CAB-1抑菌蛋白对黄瓜白粉病的防治作用 [J]. 中国生物防治学报, 2012, 28(3):375−380. doi: 10.3969/j.issn.2095-039X.2012.03.012

    ZHANG X Y, LI B Q, GUO Q G, et al. Inhibitive effect of antifungal protein produced by Bacillus subtilis CAB-I against sphaerothecafuliginea in cucumber [J]. Chinese Journal of Biological Control, 2012, 28(3): 375−380.(in Chinese) doi: 10.3969/j.issn.2095-039X.2012.03.012
    [25] 陈志杰, 谢江辉, 陈宇丰, 等. 一株植物病原拮抗细菌的分离筛选及拮抗物质 [J]. 生态学杂志, 2018, 37(5):1595−1604.

    CHEN Z J, XIE J H, CHEN Y F, et al. Isolation and screening of a plant pathogen-antagonistic bacterium and antagonistic substance [J]. Chinese Journal of Ecology, 2018, 37(5): 1595−1604.(in Chinese)
    [26] 彭帅. 地衣芽孢杆菌W10枯草杆菌蛋白酶Sp1抗菌和诱导植物抗病性机理研究[D]. 扬州: 扬州大学, 2021.

    PENG S. Study on the mechanism of antimicrobial activity and plant disease resistance induced by Bacillus licheniformis W10 subtilisin Sp1[D]. Yangzhou: Yangzhou University, 2021. (in Chinese)
    [27] 彭兵, 张树斌, 贾宇, 等. 枯草芽孢杆菌菌株A抗菌蛋白的分离纯化及抗真菌机理 [J]. 中国农业科学, 2011, 44(1):67−74. doi: 10.3864/j.issn.0578-1752.2011.01.008

    PENG B, ZHANG S B, JIA Y, et al. Purification and antifungal mechanism of a kind of antifungal protein from strain A of Bacillus subtilis [J]. Scientia Agricultura Sinica, 2011, 44(1): 67−74.(in Chinese) doi: 10.3864/j.issn.0578-1752.2011.01.008
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  681
  • HTML全文浏览量:  487
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 修回日期:  2022-11-21
  • 网络出版日期:  2023-02-08
  • 刊出日期:  2023-01-28

目录

    /

    返回文章
    返回