• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生石灰对蜜柚果园强酸性土壤化学性质和细菌群落结构的影响

陈红梅 钱笑杰 赵琳 陈晓玲 李清华 黄双勇 王飞 易志刚

陈红梅,钱笑杰,赵琳,等. 生石灰对蜜柚果园强酸性土壤化学性质和细菌群落结构的影响 [J]. 福建农业学报,2023,38(1):99−108 doi: 10.19303/j.issn.1008-0384.2023.01.013
引用本文: 陈红梅,钱笑杰,赵琳,等. 生石灰对蜜柚果园强酸性土壤化学性质和细菌群落结构的影响 [J]. 福建农业学报,2023,38(1):99−108 doi: 10.19303/j.issn.1008-0384.2023.01.013
CHEN H M, QIAN X J, ZHAO L, et al. Effects of Quicklime Application on Chemical Properties and Microbial Community of Highly Acidic Pomelo Orchard Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(1):99−108 doi: 10.19303/j.issn.1008-0384.2023.01.013
Citation: CHEN H M, QIAN X J, ZHAO L, et al. Effects of Quicklime Application on Chemical Properties and Microbial Community of Highly Acidic Pomelo Orchard Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(1):99−108 doi: 10.19303/j.issn.1008-0384.2023.01.013

生石灰对蜜柚果园强酸性土壤化学性质和细菌群落结构的影响

doi: 10.19303/j.issn.1008-0384.2023.01.013
基金项目: 福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021009);福建省农业科学院科技创新团队建设项目(CTD2021015-1);福建省科技计划公益类专项(2022R1025003)
详细信息
    作者简介:

    陈红梅(1999−),女,硕士研究生,主要从事耕地质量与保护提升方面研究(E-mail:chm659957050@163.com)

    通讯作者:

    李清华(1978−),男,硕士,副研究员,主要从事植物营养研究(E-mail:13003898776@163.com

  • 中图分类号: S 156.6;S 666.3

Effects of Quicklime Application on Chemical Properties and Microbial Community of Highly Acidic Pomelo Orchard Soil

  • 摘要:   目的  研究生石灰对蜜柚果园强酸性土壤化学性质和细菌群落结构的影响,为蜜柚果园强酸性土壤的治理提供理论依据。  方法  通过培育试验,设置不同生石灰用量处理,分别为0 g·kg−1(对照,T1)、1.2 g·kg−1(T2)、2.4 g·kg−1(T3),采用化学分析和高通量测序技术,探究不同生石灰施用量处理90 d后蜜柚果园土壤酸度、碳氮含量、细菌群落多样性和组成的变化,利用相关性分析研究细菌群落结构与土壤化学性质的相关性。  结果  与未添加生石灰的对照处理相比,蜜柚果园强酸性土壤施用生石灰后,土壤pH值增加0.91~1.70,交换性铝降低60.00%~99.17%,总碳、总氮分别增加10.27%~39.29%、12.84%~34.86%,铵态氮降低27.74%~33.84%,硝态氮增加3.45%~42.70%。随生石灰施用量的增加,土壤细菌Chao1指数、ACE指数和Shannon指数呈显著增加趋势,增幅分别为47.68%~74.15%、46.40%~73.70%、9.53%~14.95%。放线菌门(Actinobacteriota)和变形菌门(Proteobacteria)是3个处理的优势菌门(相对丰度>20%),嗜酸栖热菌属(Acidothermus)是优势菌属,且pH越低,相对丰度越高。蜜柚果园强酸性土壤施用生石灰增加绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidota)和厚壁菌门(Firmicutes)的相对丰度,提高芽单胞菌属(Gemmatimonas)和小单胞菌属(Micromonospora)的相对丰度。冗余分析(RDA)结果显示,化学性质总共解释69.32%的土壤细菌群落结构变化,其中pH影响最大。  结论  蜜柚果园强酸性土壤施用生石灰能显著提升土壤pH,降低交换性铝,维持土壤总碳、总氮含量,增加土壤硝态氮含量,提高细菌群落结构的多样性和丰富度。建议蜜柚果园强酸性土壤生石灰用量为2.4 g·kg−1
  • 图  1  不同生石灰用量的蜜柚果园土壤细菌群落结构主成分分析

    Figure  1.  Principal components analysis on soil microbial community in pomelo orchard soils under varied quicklime treatments

    图  2  不同生石灰用量的果园土壤细菌群落结构相似性分析

    Figure  2.  Analysis of similarities on microbial community in pomelo orchard soils under varied quicklime treatments

    图  3  不同生石灰用量下蜜柚果园土壤细菌群落结构组成(门水平)

    Figure  3.  Microbial community structures at phylum level of pomelo orchard soils under varied quicklime treatments

    图  4  不同生石灰用量下蜜柚果园土壤细菌群落结构组成(属水平)

    Figure  4.  Microbial community structures at genus level of pomelo orchard soils under varied quicklime treatments

    图  5  土壤化学性质与细菌群落结构组成热图分析

    Ex-Al——交换性铝;TC——总碳;TN——总氮;NH4+-N——铵态氮;NO3-N——硝态氮。***——P<0.001.

    Figure  5.  Heat map analysis on chemical properties and microbial structure of orchard soil

    Ex-Al: Exchangeable aluminum; TC: Total carbon; TN: Total nitrogen; NH4+-N: Ammonium nitrogen; NO3-N: Nitrate nitrogen. *** indicates P<0.001.

    图  6  土壤化学性质与细菌群落结构组成冗余分析

    Figure  6.  Redundant analysis of soil chemistry and bacterial community structure

    表  1  不同生石灰用量蜜柚果园土壤化学性质

    Table  1.   Chemistry of pomelo orchard soil under varied quicklime treatments

    处理
    Treatment
    pH交换性铝
    Exchangeable aluminum/
    (cmol·kg−1
    总碳
    Total carbon/
    (g·kg−1
    总氮
    Total nitrogen/
    (g·kg−1
    C/N
    Ratio of carbon to
    nitrogen
    铵态氮
    Ammonium nitrogen/
    (mg·kg−1
    硝态氮
    Nitrate nitrogen/
    (mg·kg−1
    T13.96±0.01 c1.20±0.02 a11.30±0.20 c1.09±0.00 c10.37±0.18 a3.93±0.03 a18.57±1.22 b
    T24.87±0.03 b0.48±0.02 b12.46±0.49 b1.23±0.01 b10.13±0.46 b2.84±0.03 b19.21±1.03 b
    T35.66±0.01 a0.01±0.01 c15.74±0.32 a1.47±0.02 a10.73±0.21 a2.60±0.13 c26.50±0.22 a
    表中数据为平均值±标准误差,n=3。不同小写字母表示处理间显著差异(P<0.05)。下表同。
    Data are average±standard error, n=3; those with different lowercase letters indicate significant differences between treatments (P<0.05). Same for below.
    下载: 导出CSV

    表  2  不同生石灰用量土壤细菌群落结构α多样性

    Table  2.   Alpha diversity of microbial community in soils under varied quicklime treatments

    处理
    Treatment
    OTU数量
    OTU number
    覆盖率
    Coverage/%
    Chao1 指数
    Chao1 index
    ACE 指数
    ACE index
    Shannon 指数
    Shannon index
    Simpson 指数
    Simpson index
    T11220±54 c99.58±0.03 a1501.4±63.8 c1510.8±55.3 c5.35±0.13 c0.0123±0.0023 a
    T21765±30 b99.30±0.04 b2217.2±124.9 b2211.9±135.2 b5.86±0.00 b0.0069±0.0002 b
    T32094±22 a99.12±0.11 c2614.7±147.3 a2624.3±133.7 a6.15±0.02 a0.0052±0.0003 b
    下载: 导出CSV
  • [1] 鲁艳红, 廖育林, 聂军, 等. 我国南方红壤酸化问题及改良修复技术研究进展 [J]. 湖南农业科学, 2015(3):148−151.

    LU Y H, LIAO Y L, NIE J, et al. Status of red soil acidification and its amelioration technologies in South China [J]. Hunan Agricultural Sciences, 2015(3): 148−151.(in Chinese)
    [2] 沈仁芳, 赵学强. 酸性土壤可持续利用 [J]. 农学学报, 2019, 9(3):16−20.

    SHEN R F, ZHAO X Q. The sustainable use of acid soils [J]. Journal of Agriculture, 2019, 9(3): 16−20.(in Chinese)
    [3] 徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施 [J]. 中国科学院院刊, 2018, 33(2):160−167.

    XU R K, LI J Y, ZHOU S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 160−167.(in Chinese)
    [4] 李歆博, 林伟杰, 李湘君, 等. 琯溪蜜柚园土壤酸化特征研究 [J]. 经济林研究, 2020, 38(1):169−176.

    LI X B, LIN W J, LI X J, et al. Research on soil acidification characteristics of Guanxi pomelo orchards [J]. Non-Wood Forest Research, 2020, 38(1): 169−176.(in Chinese)
    [5] 吴道铭, 傅友强, 于智卫, 等. 我国南方红壤酸化和铝毒现状及防治 [J]. 土壤, 2013, 45(4):577−584.

    WU D M, FU Y Q, YU Z W, et al. Status of red soil acidification and aluminum toxicity in South China and prevention [J]. Soils, 2013, 45(4): 577−584.(in Chinese)
    [6] 张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应 [J]. 生态学杂志, 2019, 38(6):1900−1908.

    ZHANG L Y, ZHAO X Q, SHEN R F. Soil acidification and its ecological effects [J]. Chinese Journal of Ecology, 2019, 38(6): 1900−1908.(in Chinese)
    [7] HALING R, SIMPSON R, DELHAIZE E, et al. Effect of lime on root growth, morphology and the rhizosheath of cereal seedlings growing in an acid soil [J]. Plant and Soil, 2010, 327: 199−212. doi: 10.1007/s11104-009-0047-5
    [8] 袁金华, 徐仁扣. 生物质炭对酸性土壤改良作用的研究进展 [J]. 土壤, 2012, 44(4):541−547.

    YUAN J H, XU R K. Research progress of amelioration effects of biochars on acid soils [J]. Soils, 2012, 44(4): 541−547.(in Chinese)
    [9] 易杰祥, 吕亮雪, 刘国道. 土壤酸化和酸性土壤改良研究 [J]. 华南热带农业大学学报, 2006(1):23−28.

    YI J X, LÜ L X, LIU G D. Research on soil acidification and acidic soil’s melioration [J]. Journal of South China University of Tropical Agriculture, 2006(1): 23−28.(in Chinese)
    [10] 汪瑞清, 肖运萍, 魏林根, 等. 土壤改良剂对红壤性低产地的应用效果比较研究 [J]. 江西农业学报, 2011, 23(3):75−77,81.

    WANG R Q, XIAO Y P, WEI L G, et al. Comparative study on effects of soil amendment application in low-yielding red-soil land [J]. Acta Agriculturae Jiangxi, 2011, 23(3): 75−77,81.(in Chinese)
    [11] 张思文, 陈晓辉, 蔡远扬, 等. 酸性红壤添加石灰对甜玉米幼苗生长、养分累积和土壤理化性质的影响 [J]. 中国农业大学学报, 2022, 27(3):41−52. doi: 10.11841/j.issn.1007-4333.2022.03.06

    ZHANG S W, CHEN X H, CAI Y Y, et al. Effects of supplement of lime in acidic red soil on the sweet maize seedling growth, nutrient accumulation, and soil physi-chemical properties [J]. Journal of China Agricultural University, 2022, 27(3): 41−52.(in Chinese) doi: 10.11841/j.issn.1007-4333.2022.03.06
    [12] 段媛媛, 吴佳奇, 周武先, 等. 不同改良剂对连作大黄产量及其土壤肥力的影响 [J]. 南方农业学报, 2021, 52(3):753−761.

    DUAN Y Y, WU J Q, ZHOU W X, et al. Effects of different amendments on the yield of Rheum officinale Baill. and rhizospheric soil fertility under continuous cropping system [J]. Journal of Southern Agriculture, 2021, 52(3): 753−761.(in Chinese)
    [13] 罗俊, 林兆里, 李诗燕, 等. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响 [J]. 作物学报, 2020, 46(4):596−613. doi: 10.3724/SP.J.1006.2020.94102

    LUO J, LIN Z L, LI S Y, et al. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field [J]. Acta Agronomica Sinica, 2020, 46(4): 596−613.(in Chinese) doi: 10.3724/SP.J.1006.2020.94102
    [14] 刘琼峰, 蒋平, 李志明, 等. 湖南省水稻主产区酸性土壤施用石灰的改良效果 [J]. 湖南农业科学, 2014(13):29−32.

    LIU Q F, JIANG P, LI Z M, et al. Amelioration effects of Liming on acid soil in main rice producing areas in Hunan [J]. Hunan Agricultural Sciences, 2014(13): 29−32.(in Chinese)
    [15] 王怀嵩, 张涛. 农业土壤健康评价体系研究进展 [J]. 生态与农村环境学报, 2022, 38(9):1093−1100.

    WANG H S, ZHANG T. Research progress of agricultural soil health evaluation system [J]. Journal of Ecology and Rural Environment, 2022, 38(9): 1093−1100.(in Chinese)
    [16] 张影, 胡承孝, 谭启玲, 等. 施用石灰对温州蜜柑树体营养和果实品质及酸性柑橘园土壤养分有效性的影响 [J]. 华中农业大学学报, 2014, 33(4):72−76.

    ZHANG Y, HU C X, TAN Q L, et al. Effects of liming on nutrition status, quality of satsuma mandarin and acid soil nutrients availability of citrus orchard [J]. Journal of Huazhong Agricultural University, 2014, 33(4): 72−76.(in Chinese)
    [17] 谢志南, 庄伊美, 王仁玑, 等. 福建亚热带果园土壤pH值与有效态养分含量的相关性 [J]. 园艺学报, 1997, 24(3):209−214.

    XIE Z N, ZHUANG Y M, WANG R J, et al. Correlation between soil pH and the contents of available nutrients in selected soils from three kinds of orchards at subtropical zone in Fujian [J]. Acta Horticulturae Sinica, 1997, 24(3): 209−214.(in Chinese)
    [18] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999.
    [19] DENNIS K L, WANG Y W, BLATNER N R, et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells [J]. Cancer Research, 2013, 73(19): 5905−5913. doi: 10.1158/0008-5472.CAN-13-1511
    [20] XIAO H, WANG B, LU S B, et al. Soil acidification reduces the effects of short‐term nutrient enrichment on plant and soil biota and their interactions in grasslands [J]. Global Change Biology, 2020, 26: 4626−4637. doi: 10.1111/gcb.15167
    [21] 张义杰, 徐杰, 陆仁窗, 等. 生石灰对林下酸化土壤的调控作用及三七生长的影响 [J]. 应用生态学报, 2022, 33(4):972−980.

    ZHANG Y J, XU J, LU R C, et al. Modification of quicklime on acid soil under forest and their effect on the growth of Panax notoginseng [J]. Chinese Journal of Applied Ecology, 2022, 33(4): 972−980.(in Chinese)
    [22] 胡敏, 向永生, 鲁剑巍. 石灰用量对酸性土壤pH值及有效养分含量的影响 [J]. 中国土壤与肥料, 2017(4):72−77.

    HU M, XIANG Y S, LU J W. Effects of lime application rates on soil pH and available nutrient content in acidic soils [J]. Soil and Fertilizer Sciences in China, 2017(4): 72−77.(in Chinese)
    [23] 苏杨, 张俊涛, 李铤, 等. 4种改良材料对城市绿地酸性土壤的改良效果 [J]. 林业与环境科学, 2021, 37(4):62−68.

    SU Y, ZHANG J T, LI T, et al. Effects of four amendments on acidic soils of urban green space [J]. Forestry and Environmental Science, 2021, 37(4): 62−68.(in Chinese)
    [24] 蔡东, 肖文芳, 李国怀. 施用石灰改良酸性土壤的研究进展 [J]. 中国农学通报, 2010, 26(9):206−213.

    CAI D, XIAO W F, LI G H. Advance on study of liming on acid soils [J]. Chinese Agricultural Science Bulletin, 2010, 26(9): 206−213.(in Chinese)
    [25] LU X F, GILLIAM F S, GUO J Y, et al. Decrease in soil pH has greater effects than increase in above-ground carbon inputs on soil organic carbon in terrestrial ecosystems of China under nitrogen enrichment [J]. Journal of Applied Ecology, 2022, 59(3): 768−778. doi: 10.1111/1365-2664.14091
    [26] 曹文超, 宋贺, 王娅静, 等. 农田土壤N2O排放的关键过程及影响因素 [J]. 植物营养与肥料学报, 2019, 25(10):1781−1798.

    CAO W C, SONG H, WANG Y J, et al. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1781−1798.(in Chinese)
    [27] ZHANG Y, ZHAO J, HUANG X Q, et al. Microbial pathways account for the pH effect on soil N2O production [J]. European Journal of Soil Biology, 2021, 106: 103337. doi: 10.1016/j.ejsobi.2021.103337
    [28] WEI Z, YANG T J, FRIMAN V P, et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health [J]. Nature Communications, 2015, 6(1): 1−9.
    [29] 王海斌, 陈晓婷, 丁力, 等. 土壤酸度对茶树根际土壤微生物群落多样性影响 [J]. 热带作物学报, 2018, 39(3):448−454.

    WANG H B, CHEN X T, DING L, et al. Effect of soil acidity on microbial diversity in rhizospheric soils of tea plants [J]. Chinese Journal of Tropical Crops, 2018, 39(3): 448−454.(in Chinese)
    [30] 陶玲, 李晓莉, 朱建强, 等. 施用生石灰对精养池塘浮游细菌群落结构和多样性的影响 [J]. 水生生物学报, 2017, 41(2):399−406.

    TAO L, LI X L, ZHU J Q, et al. Effects of quicklime application on community structure and diversity of bacterioplankton in intensive culture ponds [J]. Acta Hydrobiologica Sinica, 2017, 41(2): 399−406.(in Chinese)
    [31] 宋宇, 王鹏, 韦月平. 不同稻田共作模式对土壤细菌群落结构的影响 [J]. 西北农业学报, 2020, 29(2):216−223.

    SONG Y, WANG P, WEI Y P. Effects of different co-cultivation patterns of rice field on soil bacterial communities structure [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(2): 216−223.(in Chinese)
    [32] 徐光泽, 席飞虎, 张重义. 施用生石灰对烤烟根际生物学特征及烟叶产质量的影响 [J]. 江西农业学报, 2014, 26(7):67−70.

    XU G Z, XI F H, ZHANG Z Y. Effects of using quick lime on biological characteristics of rhizospheric microorganisms of flue-cured tobacco, and yield and quality of tobacco leaves [J]. Acta Agriculturae Jiangxi, 2014, 26(7): 67−70.(in Chinese)
    [33] GRIFFITHS R I, THOMSON B C, JAMES P, et al. The bacterial biogeography of British soils [J]. Environmental Microbiology, 2011, 13(6): 1642−1654. doi: 10.1111/j.1462-2920.2011.02480.x
    [34] CHEN L L, XU H B, WU S Y, et al. Plant and soil properties mediate the response of soil microbial communities to moderate grazing in a semiarid grassland of Northern China [J]. Journal of Environmental Management, 2021, 284: 112005. doi: 10.1016/j.jenvman.2021.112005
    [35] LIU L L, HUANG X Q, ZHANG J B, et al. Deciphering the relative importance of soil and plant traits on the development of rhizosphere microbial communities [J]. Soil Biology and Biochemistry, 2020, 148: 107909. doi: 10.1016/j.soilbio.2020.107909
    [36] SUN H, TERHONEN E, KOSKINEN K, et al. Bacterial diversity and community structure along different peat soils in boreal forest [J]. Applied Soil Ecology, 2014, 74: 37−45. doi: 10.1016/j.apsoil.2013.09.010
    [37] FAZI S, AMALFITANO S, PERNTHALER J, et al. Bacterial communities associated with benthic organic matter in headwater stream microhabitats [J]. Environmental Microbiology, 2005, 7(10): 1633−1640. doi: 10.1111/j.1462-2920.2005.00857.x
    [38] IBRAHIM M M, TONG C X, HU K, et al. Biochar-fertilizer interaction modifies N-sorption, enzyme activities and microbial functional abundance regulating nitrogen retention in rhizosphere soil [J]. Science of the Total Environment, 2020, 739: 140065. doi: 10.1016/j.scitotenv.2020.140065
    [39] 宋宇, 丛培东, 曲贵伟, 等. 不同复合种养模式稻田土壤细菌群落结构比较分析 [J]. 中国稻米, 2022, 28(3):47−51.

    SONG Y, CONG P D, QU G W, et al. Comparative analysis of bacterial community structure in paddy soil under different complex cultivation models [J]. China Rice, 2022, 28(3): 47−51.(in Chinese)
    [40] 王明元, 侯式贞, 董涛, 等. 香蕉假茎生物炭对根际土壤细菌丰度和群落结构的影响[J]. 微生物学报, 2019, 59(7): 1363-1372.

    WANG M Y, HOU S Z, DONG T, et al. Effects of banana pseudostem biochar on bacterial abundance and community structure in rhizosphere soil[J]. Acta Microbiologica Sinica, 2019, 59(7): 1363-1372. (in Chinese)
    [41] 杨星鹏, 张志斌, 朱笃. 小单胞菌属次级代谢产物及其生物活性研究进展 [J]. 天然产物研究与开发, 2019, 31:908−915,921.

    YANG X P, ZHANG Z B, ZHU D. Review on secondary metabolites and its biological activities from genus Micromonospora [J]. Natural Product Research and Developmen, 2019, 31: 908−915,921.(in Chinese)
    [42] XIE F C, ZHANG G Y, ZHENG Q J, et al. Beneficial effects of mixing Kentucky bluegrass with red fescue via plant-soil interactions in black soil of northeast China [J]. Frontiers in Microbiology, 2020, 11: 556118. doi: 10.3389/fmicb.2020.556118
    [43] 王英成, 姚世庭, 金鑫, 等. 三江源区高寒退化草甸土壤细菌多样性的对比研究 [J]. 生态环境学报, 2022, 31(4):695−703.

    WANG Y C, YAO S T, JIN X, et al. Comparative study on soil bacterial diversity of degraded alpine meadow in the Sanjiangyuan region [J]. Ecology and Environmental Sciences, 2022, 31(4): 695−703.(in Chinese)
    [44] LAUBER C L, HAMADY M, KNIGHT R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale [J]. Applied and Environmental Microbiology, 2009, 75(15): 5111−5120. doi: 10.1128/AEM.00335-09
    [45] BRADY N C, WEIL R. The nature and properties of soils[M]. 14th ed. New Jersey: Prentice Hall, 2007.
    [46] 王娟娟, 朱紫娟, 钱晓晴, 等. 全年稻麦秸秆还田对稻田土壤细菌群落结构的影响 [J]. 中国土壤与肥料, 2022(4):57−65.

    WANG J J, ZHU Z J, QIAN X Q, et al. Effects of year-round rice-wheat straw return on soil bacterial community structure in paddy fields [J]. Soil and Fertilizer Sciences in China, 2022(4): 57−65.(in Chinese)
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  162
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 录用日期:  2022-07-04
  • 修回日期:  2022-10-21
  • 网络出版日期:  2023-03-06
  • 刊出日期:  2023-01-28

目录

    /

    返回文章
    返回