• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水稻优良恢复系福恢676的粒形及米质分析

连玲 周鹏 郑菲艳 朱永生 郑燕梅 王福祥 何炜 蔡秋华 谢华安 张建福

连玲,周鹏,郑菲艳,等. 水稻优良恢复系福恢676的粒形及米质分析 [J]. 福建农业学报,2023,38(2):127−136 doi: 10.19303/j.issn.1008-0384.2023.02.001
引用本文: 连玲,周鹏,郑菲艳,等. 水稻优良恢复系福恢676的粒形及米质分析 [J]. 福建农业学报,2023,38(2):127−136 doi: 10.19303/j.issn.1008-0384.2023.02.001
LIAN L, ZHOU P, ZHENG F Y, et al. Grain Shape and Quality of Premium Rice Restorer Fuhui 676 [J]. Fujian Journal of Agricultural Sciences,2023,38(2):127−136 doi: 10.19303/j.issn.1008-0384.2023.02.001
Citation: LIAN L, ZHOU P, ZHENG F Y, et al. Grain Shape and Quality of Premium Rice Restorer Fuhui 676 [J]. Fujian Journal of Agricultural Sciences,2023,38(2):127−136 doi: 10.19303/j.issn.1008-0384.2023.02.001

水稻优良恢复系福恢676的粒形及米质分析

doi: 10.19303/j.issn.1008-0384.2023.02.001
基金项目: 国家水稻产业技术体系建设专项(CARS-01-20);福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021001);福建省科技重大专项(2020NZ08016);福建省科技计划公益类专项(2020R1023008);福建省农业科学院科技创新团队建设项目(CXTD2021005-3)
详细信息
    作者简介:

    连玲(1983−),女,硕士,助理研究员,研究方向:水稻分子生物学与分子育种研究(E-mail:lianling51@163.com

    周鹏(1983−),男,硕士,助理研究员,研究方向:水稻遗传育种(E-mail:158544855@qq.com

    通讯作者:

    张建福(1971−),男,博士,研究员,博士生导师,研究方向:水稻分子设计育种研究(E-mail:jianfzhang@163.com

  • 中图分类号: S511

Grain Shape and Quality of Premium Rice Restorer Fuhui 676

  • 摘要:   目的  福恢676是福建省农业科学院水稻研究所在“丰产性、抗逆性、优质性及适应性”水稻育种策略指导下育成的强优势恢复系。对福恢676的粒形和米质进行相关研究,可以为该恢复系更好地应用于育种生产提供理论依据。  方法  将福恢676、亲本明恢63和蜀恢527、恢复系明恢86和福恢673种植于福州、泉州及三明试验基地,收获成熟种子,自然晒干。测量各恢复系的谷粒长、宽及厚度,称取千粒重,测定各恢复系的米质,并进行比较分析。采用CTAB法提取水稻基因组DNA,PCR扩增Wx基因片段,采用限制性内切酶Acc I对PCR产物进行酶切分析,根据琼脂糖电泳结果及测序分析确定Wx基因第一内含子+1位碱基类型。采用Trizol法提取水稻种子总RNA,进一步采用SYBR Green I荧光定量PCR(qRT-PCR)分析灌浆不同时期控制粒形和米质相关基因的表达情况。  结果  福恢676的谷粒长大多为10.0~11.0 mm,宽约2.70 mm,厚约2.00 mm,千粒重27.0~31.0 g。福恢676的糙米率大于81.0%,胶稠度大于60.0 mm,直链淀粉含量在13.0%~18.0%,达到一级米标准;福恢676的整精米率高于其他4个恢复系,垩白率和垩白度高于亲本明恢63与蜀恢527,低于明恢86和福恢673。福恢676和其他4个恢复系中Wx基因第一内含子+1位碱基均为T,即Wx基因型为Wxb。福恢676中控制粒形相关基因GL7的表达在灌浆11 d时明显下降; GS3、SGLGIF1的表达先升高后降低,且在灌浆7 d时表达量最高;GW8的表达先降低后升高,且在灌浆11 d时表达量最高。福恢676中控制米质相关基因Chalk5的表达量在灌浆7 d时最高,而在11 d时几乎不表达;ALK、OsSSI、OsBEIIb的表达先升高后降低,在灌浆7 d时表达量最高,且表达模式与其他4个恢复系中的完全不同。  结论  福恢676的谷粒较长,整精米率较高,糙米率、胶稠度和直链淀粉含量达到一级米标准,Wx基因型为Wxb,福恢676中控制粒形基因GL7GS3和米质基因ALKOsSSIOsBEIIb的表达模式与其他4个恢复系中有明显不同。
  • 图  1  不同恢复系稻谷粒形(福州)

    Figure  1.  Shapes of rice grains of different restorer lines (Fuzhou)

    图  2  Wx基因片段的PCR扩增及限制性酶切分析

    A为PCR扩增,B为限制性酶切分析;M为Marker 2000,1为对照广恢128,2为明恢86,3为明恢63,4为福恢676,5为福恢673,6为蜀恢527。

    Figure  2.  PCR amplification and restriction enzyme analysis of Wx gene fragment

    A: PCR amplification; B: restriction enzyme analysis; M: Marker 2000 bp; 1: Guanghui128 as control; 2: Minghui86; 3: Minghui63; 4: Fuhui676; 5: Fuhui673; 6: Shuhui527.

    图  3  Wx基因片段的序列比对分析

    方框内为碱基差异位置。

    Figure  3.  Sequence alignment on Wx gene fragment

    Position of base difference is showed in box.

    图  4  控制粒形相关基因表达情况

    Figure  4.  Expressions of genes related to grain shape

    图  5  控制米质相关基因表达情况

    Figure  5.  Expression of genes related to grain quality

    表  1  qRT-PCR引物

    Table  1.   Primers for qRT-PCR

    基因名称Gene names引物序列(5′-3′)Primer sequence(5′-3′)
    GL7 F: AAGGACTTCAGGGCTCTCAGGATAC
    R: GCTGGAAGTGTCTGGAACTGGTGTT
    GS3 F: GGGTGAAATAAATTCAATCGAAGGG
    R: GCACAAACAGCGAAACTTCTTCAAG
    GW8 F: AGGAGTTTGATGAGGCCAAG
    R: GCGTGTAGTATGGGCTCTCC
    SGL F: CTCTTCTATGGAACCTGACAG
    R: CTGAGAAGCTGAAGCAGATG
    GIF1 F: TTGGTAGTAGGGTCGCTTGGGC
    R: CCAGTCCGGAGCTCAGAGTCGA
    Chalk5 F: GCCGTCACCTTCCTCTCCCTCC
    R: CGTAAGCATTGCTCGTGAAGTACTCG
    ALK F: CCTATTCCTGCGGTAGAAGA
    R: CCGAATCGTCATCCTGGT
    OsSSI F: GTGAGCAGGAGTCTGAGAT
    R: TGACCACGAAGAGCAAGA
    OsBEIIb F: CGGTTTCAGCAGGTTCAGA
    R: CTCCAGATGACTCAATCTCAACTT
    Actin150 F: AGTGTCTGGATTGGAGGAT
    R: TCTTGGCTTAGCATTCTTG
    下载: 导出CSV

    表  2  稻谷粒形和千粒重分析

    Table  2.   Grain shape and 1000-grain weight of rice restorers

    种植地区Growing areas恢复系Restorer lines谷粒长Grain length/mm谷粒宽Grain width/mm长宽比Length-width ratio谷粒厚Grain thickness/mm千粒重1000-grain weight/g
    福州 Fuzhou 福恢676 Fuhui676 10.57±0.33 2.72±0.10 3.90±0.18 2.09±0.07 27.66±0.47
    明恢63 Minghui63 9.98±0.27* 2.72±0.09 3.67±0.15* 1.99±0.05* 26.82±0.17*
    蜀恢527 Shuhui527 11.28±0.34* 2.73±0.11 4.14±0.19* 2.08±0.06 29.40±0.13*
    明恢86 Minghui86 9.91±0.24* 2.75±0.09 3.60±0.11* 1.94±0.10* 26.60±0.20*
    福恢673 Fuhui673 10.15±0.36* 2.74±0.08 3.70±0.13* 2.00±0.07* 26.42±0.26*
    泉州 Quanzhou 福恢676 Fuhui676 10.80±0.40 2.76±0.07 3.92±0.15 2.04±0.09 30.31±0.02
    明恢63 Minghui63 10.51±0.25* 2.79±0.07 3.77±0.10* 2.00±0.07 30.17±0.13
    蜀恢527 Shuhui527 11.54±0.39* 2.79±0.09 4.14±0.15* 2.00±0.09 31.82±0.01*
    明恢86 Minghui86 9.98±0.28* 2.78±0.10 3.60±0.14* 2.06±0.07 29.44±0.38*
    福恢673 Fuhui673 10.31±0.42* 2.74±0.11 3.77±0.22* 2.08±0.06 30.35±0.29
    三明 Sanming 福恢676 Fuhui676 10.36±0.46 2.79±0.09 3.72±0.21 2.07±0.05 29.13±0.17
    明恢63 Minghui63 9.84±0.33* 2.80±0.09 3.52±0.18* 1.99±0.08* 28.52±0.14*
    蜀恢527 Shuhui527 10.85±0.32* 2.79±0.09 3.90±0.19* 2.01±0.08* 30.87±0.20*
    明恢86 Minghui86 9.44±0.29* 2.85±0.12 3.32±0.19* 1.94±0.08* 27.88±0.48*
    福恢673 Fuhui673 9.99±0.40* 2.86±0.10* 3.49±0.16* 1.97±0.11* 26.89±0.38*
    *表示差异达显著水平(P≤ 0.05),没有标注*表示没有显著差异。下表同。*indicate significant differences at P≤0.05. Same for below.
    下载: 导出CSV

    表  3  米质分析

    Table  3.   Analysis of grain quality

    种植地区Growing Areas恢复系Restorer lines糙米率Brown rice rate/%精米率Milled rice rate/%整精米率Head rice rate/%长Length/mm宽Width/mm长宽比Length to width垩白率Chalkiness ratio/%垩白度Chalkiness degree/%透明度Transparency碱消值Alkali value直链淀粉含量Amylose content/%胶稠度Gel consistency/mm
    福州Fuzhou 福恢676 Fuhui676 81.40±0.13 69.60±0.28 44.10±0.59 6.39±0.11 2.23±0.09 2.88±0.02 28.13±0.97 6.23±0.87 3.00±0.00 4.53±0.12 14.20±0.33 91.97±0.29
    明恢63 Minghui63 81.80±0.26 69.80±0.96 38.27±1.06* 6.39±0.19 2.30±0.02 2.80±0.04* 18.83±1.30* 3.70±0.50* 3.00±0.00 4.30±0.10 11.97±0.31* 90.97±1.16
    蜀恢527 Shuhui527 81.87±0.64 69.30±0.79 35.10±0.56* 6.95±0.25* 2.30±0.06 3.12±0.07* 16.87±0.38* 3.23±0.15* 2.00±0.00 4.43±0.06 12.47±0.12* 86.00±0.80*
    明恢86 Minghui86 82.13±0.15* 68.37±0.50* 43.10±0.79 6.19±0.12* 2.32±0.09 2.70±0.06* 35.97±1.22* 9.93±0.38* 2.00±0.00 6.83±0.12* 13.50±0.17* 83.00±0.60*
    福恢673 Fuhui673 82.23±0.15* 68.10±0.44* 41.60±0.90* 6.23±0.13 2.29±0.02 2.74±0.01* 49.57±1.76* 10.10±0.26* 3.00±0.00 4.27±0.15 12.17±0.12* 95.00±0.30*
    泉州Quanzhou 福恢676 Fuhui676 81.80±0.15 71.23±0.31 55.43±0.90 6.71±0.15 2.27±0.07 2.98±0.07 16.30±0.82 3.60±0.46 2.00±0.00 4.33±0.21 15.40±0.53 88.00±0.61
    明恢63 Minghui63 82.80±0.15* 71.37±0.51 40.60±0.30* 6.83±0.10 2.38±0.05 2.90±0.04 14.13±0.76* 2.57±0.31* 3.00±0.00 4.37±0.21 13.00±0.20* 90.03±0.06*
    蜀恢527 Shuhui527 81.8±0.17 70.77±0.23 42.67±0.21* 7.23±0.21* 2.27±0.06 3.21±0.04* 11.60±0.61* 1.83±0.31* 2.00±0.00 4.30±0.26 14.23±0.38* 86.00±0.75*
    明恢86 Minghui86 82.60±0.15* 70.63±0.15* 36.80±0.17* 6.62±0.15 2.40±0.04* 2.79±0.07* 38.63±0.49* 9.07±0.70* 2.00±0.00 6.47±0.29* 15.16±0.55 78.00±0.72*
    福恢673 Fuhui673 81.70±0.20 70.60±0.20* 42.33±0.47* 6.83±0.25 2.34±0.07 2.94±0.05 50.93±3.23* 10.23±0.83* 3.00±0.00 4.20±0.10 13.57±0.21* 93.03±0.21*
    三明Sanming 福恢676 Fuhui676 82.70±0.10 73.37±0.21 51.80±0.70 6.63±0.10 2.28±0.05 2.92±0.06 17.9±1.42 3.67±0.31 2.00±0.00 4.43±0.15 16.67±0.32 92.00±0.50
    明恢63 Minghui63 81.90±0.06* 71.63±0.15* 44.30±0.44* 6.75±0.19 2.41±0.08 2.81±0.07 9.20±0.56* 1.73±0.49* 2.00±0.00 4.83±0.06* 16.17±0.15 86.03±0.74*
    蜀恢527 Shuhui527 81.90±0.35* 72.10±0.40* 34.10±0.44* 7.23±0.21* 2.36±0.05 3.14±0.09* 12.80±2.26* 2.83±0.55 3.00±0.00 4.43±0.32 15.83±0.06* 91.97±1.25
    明恢86 Minghui86 83.20±0.26* 74.07±0.23* 38.67±1.26* 6.32±0.12* 2.39±0.10 2.65±0.05* 18.30±1.87 5.43±0.25* 2.00±0.00 6.83±0.21* 16.07±0.51 81.97±0.64*
    福恢673 Fuhui673 82.40±0.10* 71.03±0.21* 49.20±0.61* 6.48±0.07* 2.34±0.08 2.79±0.02* 29.73±0.80* 6.53±0.55* 3.00±0.00 4.33±0.25 14.43±0.31* 92.00±0.40
    下载: 导出CSV
  • [1] 王跃星, 魏祥进, 徐春春, 等. 我国水稻种业发展现状与对策浅析 [J]. 中国稻米, 2022, 28(5):62−65. doi: 10.3969/j.issn.1006-8082.2022.05.010

    WANG Y X, WEI X J, XU C C, et al. Current situation and countermeasures of rice breeding and seed industry development in China [J]. China Rice, 2022, 28(5): 62−65.(in Chinese) doi: 10.3969/j.issn.1006-8082.2022.05.010
    [2] 阳峰萍, 胡志萍, 刘海林, 等. 籼型杂交水稻恢复系的选育研究进展 [J]. 杂交水稻, 2007, 22(2):6−10. doi: 10.3969/j.issn.1005-3956.2007.02.002

    YANG F P, HU Z P, LIU H L, et al. Progresses in breeding restorer lines of indica hybrid rice [J]. Hybrid Rice, 2007, 22(2): 6−10.(in Chinese) doi: 10.3969/j.issn.1005-3956.2007.02.002
    [3] 何道根, 潘晓飚, 屈为栋. 杂交早稻亲本遗传差异及其与杂种优势的关系 [J]. 杂交水稻, 2000, 15(5):34−36. doi: 10.3969/j.issn.1005-3956.2000.05.017

    HE D G, PAN X B, QU W D. Genetic differences of parents and its relation to heterosis in early hybrid rice [J]. Hybrid Rice, 2000, 15(5): 34−36.(in Chinese) doi: 10.3969/j.issn.1005-3956.2000.05.017
    [4] XING Y Z, ZHANG Q F. Genetic and molecular bases of rice yield [J]. Annual Review of Plant Biology, 2010, 61: 421−442. doi: 10.1146/annurev-arplant-042809-112209
    [5] CALINGACION M, LABORTE A, NELSON A, et al. Diversity of global rice markets and the science required for consumer-targeted rice breeding [J]. PLoS One, 2014, 9(1): e85106. doi: 10.1371/journal.pone.0085106
    [6] 莫惠栋. 我国稻米品质的改良 [J]. 中国农业科学, 1993, 26(4):8−14.

    MO H D. Quality improvement of rice grain in China [J]. Scientia Agricultura Sinica, 1993, 26(4): 8−14.(in Chinese)
    [7] 杨维丰, 詹鹏麟, 林少俊, 等. 水稻粒形的遗传研究进展 [J]. 华南农业大学学报, 2019, 40(5):203−210. doi: 10.7671/j.issn.1001-411X.201905081

    YANG W F, ZHAN P L, LIN S J, et al. Research progress of grain shape genetics in rice [J]. Journal of South China Agricultural University, 2019, 40(5): 203−210.(in Chinese) doi: 10.7671/j.issn.1001-411X.201905081
    [8] 杨联松, 白一松, 张培江, 等. 谷粒形状与稻米品质相关性研究 [J]. 杂交水稻, 2001, 16(4):48−50,54. doi: 10.3969/j.issn.1005-3956.2001.04.023

    YANG L S, BAI Y S, ZHANG P J, et al. Studies on the correlation between grain shape and grain quality in rice [J]. Hybrid Rice, 2001, 16(4): 48−50,54.(in Chinese) doi: 10.3969/j.issn.1005-3956.2001.04.023
    [9] 刘倩, 张国豪, 车万均, 等. 杂交水稻重要亲本农艺性状配合力遗传力分析 [J]. 广东农业科学, 2020, 47(1):1−8.

    LIU Q, ZHANG G H, CHE W J, et al. Analysis on combining ability and heritability in agronomic traits of key parents of hybrid rice [J]. Guangdong Agricultural Sciences, 2020, 47(1): 1−8.(in Chinese)
    [10] WANG Y X, XIONG G S, HU J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice [J]. Nature Genetics, 2015, 47(8): 944−948. doi: 10.1038/ng.3346
    [11] MAO H L, SUN S Y, YAO J L, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19579−19584. doi: 10.1073/pnas.1014419107
    [12] WANG S K, WU K, YUAN Q B, et al. Control of grain size, shape and quality by OsSPL16 in rice [J]. Nature Genetics, 2012, 44(8): 950−954. doi: 10.1038/ng.2327
    [13] WU T, SHEN Y Y, ZHENG M, et al. Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice [J]. Plant Cell Reports, 2014, 33(2): 235−244. doi: 10.1007/s00299-013-1524-0
    [14] SUN L, YANG D L, KONG Y, et al. Sugar homeostasis mediated by cell wall invertase grain incomplete filling 1 (gif1) plays a role in pre-existing and induced defence in rice [J]. Molecular Plant Pathology, 2014, 15(2): 161−173. doi: 10.1111/mpp.12078
    [15] 周勇, 汪莲爱, 宋国清, 等. 杂交水稻亲本对F2米质性状的影响 [J]. 湖北农业科学, 1996, 35(3):15−18.

    ZHOU Y, WANG L A, SONG G Q, et al. Effect of hybrid rice parents on F2 rice quality [J]. Hubei Agricultural Sciences, 1996, 35(3): 15−18.(in Chinese)
    [16] 李关土, 董世钧, 李春寿, 等. 杂交早稻产量与品质性状的配合力研究 [J]. 浙江农业学报, 1994, 6(2):71−75.

    LI G T, DONG S J, LI C S, et al. Combining ability for the characters of yield and grain quality in early indica hybrid rices: [J]. Acta Agriculturae Zhejiangensis, 1994, 6(2): 71−75.(in Chinese)
    [17] 敖雁, 徐辰武. 籼型杂种稻米品质性状的表现及其与亲本的关系 [J]. 江苏农学院学报, 1997, 18(4):23−27.

    AO Y, XU C W. Performance of quality characters in indica hybrid rice and the relationship with their parents [J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 1997, 18(4): 23−27.(in Chinese)
    [18] CAI X L, WANG Z Y, XING Y Y, et al. Aberrant splicing of intron 1 leads to the heterogeneous 5' UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content [J]. The Plant Journal:for Cell and Molecular Biology, 1998, 14(4): 459−465. doi: 10.1046/j.1365-313X.1998.00126.x
    [19] LI Y B, FAN C C, XING Y Z, et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice [J]. Nature Genetics, 2014, 46(4): 398−404. doi: 10.1038/ng.2923
    [20] GAO Z Y, ZENG D L, CUI X, et al. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice [J]. Science in China Series C:Life Sciences, 2003, 46(6): 661−668. doi: 10.1360/03yc0099
    [21] FUJITA N, YOSHIDA M, ASAKURA N, et al. Function and characterization of starch synthase I using mutants in rice [J]. Plant Physiology, 2006, 140(3): 1070−1084. doi: 10.1104/pp.105.071845
    [22] TANAKA N, FUJITA N, NISHI A, et al. The structure of starch can be manipulated by changing the expression levels of starch branching enzyme llb in rice endosperm [J]. Plant Biotechnology Journal, 2004, 2(6): 507−516. doi: 10.1111/j.1467-7652.2004.00097.x
    [23] 董瑞霞, 王洪飞, 郑长林, 等. 弱感光型杂交水稻新组合泰优676 [J]. 杂交水稻, 2017, 32(2):86−88. doi: 10.16267/j.cnki.1005-3956.201702023

    DONG R X, WANG H F, ZHENG C L, et al. Taiyou 676, a new weak photosensitive hybrid rice combination [J]. Hybrid Rice, 2017, 32(2): 86−88.(in Chinese) doi: 10.16267/j.cnki.1005-3956.201702023
    [24] BLIGH H F J, TILL R I, JONES C A. A microsatellite sequence closely linked to the Waxy gene of Oryza sativa [J]. Euphytica, 1995, 86(2): 83−85. doi: 10.1007/BF00022012
    [25] 连玲, 潘丽燕, 朱永生, 等. 杂交水稻骨干亲本Wx基因第一内含子+1位碱基多态性分析 [J]. 福建农业学报, 2019, 34(12):1355−1363.

    LIAN L, PAN L Y, ZHU Y S, et al. Polymorphisms on first base of wx gene intron 1 in parents of hybrid rice [J]. Fujian Journal of Agricultural Sciences, 2019, 34(12): 1355−1363.(in Chinese)
    [26] 康雪蒙, 马梦影, 巩文靓, 等. 水稻粒型基因研究进展及应用 [J]. 农学学报, 2020, 10(12):21−25. doi: 10.11923/j.issn.2095-4050.cjas20190900184

    KANG X M, MA M Y, GONG W J, et al. Rice grain shape genes: Research progress and application [J]. Journal of Agriculture, 2020, 10(12): 21−25.(in Chinese) doi: 10.11923/j.issn.2095-4050.cjas20190900184
    [27] 王玉平, 李仕贵, 黎汉云, 等. 高配合力优质水稻恢复系蜀恢527的选育与利用 [J]. 杂交水稻, 2004, 19(4):12−14,29. doi: 10.3969/j.issn.1005-3956.2004.04.004

    WANG Y P, LI S G, LI H Y, et al. Breeding and utilization of restorer line Shuhui 527 with good grain quality and high combining ability in grain yield [J]. Hybrid Rice, 2004, 19(4): 12−14,29.(in Chinese) doi: 10.3969/j.issn.1005-3956.2004.04.004
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  135
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 录用日期:  2022-11-01
  • 修回日期:  2023-01-07
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回