• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

番茄GT-1基因组织表达模式及非生物胁迫、植物生长调节剂响应分析

崔宝禄 陈忠平 孙婷婷 龙俊霖 王先霞 曾思进 石怡然

崔宝禄,陈忠平,孙婷婷,等. 番茄GT-1基因组织表达模式及非生物胁迫、植物生长调节剂响应分析 [J]. 福建农业学报,2023,38(2):144−150 doi: 10.19303/j.issn.1008-0384.2023.02.003
引用本文: 崔宝禄,陈忠平,孙婷婷,等. 番茄GT-1基因组织表达模式及非生物胁迫、植物生长调节剂响应分析 [J]. 福建农业学报,2023,38(2):144−150 doi: 10.19303/j.issn.1008-0384.2023.02.003
CUI B L, CHEN Z P, SUN T T, et al. Expressions and Responses to Abiotic Stresses and Plant Growth Regulator of Tomato GT-1 [J]. Fujian Journal of Agricultural Sciences,2023,38(2):144−150 doi: 10.19303/j.issn.1008-0384.2023.02.003
Citation: CUI B L, CHEN Z P, SUN T T, et al. Expressions and Responses to Abiotic Stresses and Plant Growth Regulator of Tomato GT-1 [J]. Fujian Journal of Agricultural Sciences,2023,38(2):144−150 doi: 10.19303/j.issn.1008-0384.2023.02.003

番茄GT-1基因组织表达模式及非生物胁迫、植物生长调节剂响应分析

doi: 10.19303/j.issn.1008-0384.2023.02.003
基金项目: 国家自然科学基金项目(31960605)
详细信息
    作者简介:

    崔宝禄(1979−),男,博士,教授,研究方向:植物分子生物学(E-mail:cuibaolu98@163.com

  • 中图分类号: S641.2

Expressions and Responses to Abiotic Stresses and Plant Growth Regulator of Tomato GT-1

  • 摘要:   目的  完善番茄GT-1亚家族基因的相关功能信息,为进一步研究Trihelix转录因子调控植物生长发育过程、提高植物非生物胁迫的抗性能力提供参考。  方法  利用生物信息学方法对GT-1基因进行生物进化分析,利用RT-PCR技术鉴定GT-1基因对非生物胁迫和植物生长调节剂的响应。  结果  (1)番茄中包含3个GT-1基因,即SlGT-21、SlGT-24和SlGT-35,进化分析表明番茄GT-1基因存在功能分化。(2)表达模式分析发现,3个基因于番茄所有组织中均表达,特别是果实发育阶段,推测SlGT-21、SlGT-35有部分类似功能。(3)3个GT-1基因受干旱抑制,但SlGT-24受抑制更明显;3个基因均响应盐胁迫,SlGT-21、SlGT-35基因被较明显抑制。(4)3个基因受植物生长调节剂GA(赤霉素)、EBR(表油菜素内酯)、MeJA(茉莉酸甲酯)抑制,但SlGT-24、SlGT-35受ABA(脱落酸)诱导,而SlGT-24还受ACC(1-氨基环丙烷羧酸)诱导。  结论  番茄GT-1亚家族3个基因受盐、干旱的调控,且对植物生长调节剂的响应明显。该研究为深入探究GT-1亚家族成员的生物功能提供了重要参考。
  • 图  1  GT-1亚家族氨基酸多重序列比对

    Figure  1.  Multiple alignment of GT-1 protein sequences

    图  2  GT-1亚家族蛋白生物进化分析

    Figure  2.  Phylogenetic analysis on GT-1 proteins

    图  3  番茄不同组织中GT-1基因的表达模式

    R:根;ST:茎; YL:幼叶; ML:成熟叶;SL:老叶; F:花; IMG:未成熟果实; MG:成熟果实;B:破色期; B+4:破色后4 d;B+7:破色后7 d。不同小写字母表示不同番茄组织之间差异显著(P<0.05)。图45同。

    Figure  3.  Expressions of GT-1 genes in different tissues of AC++

    RT: roots; ST: stems; YL: young leaves; ML: mature leaves; SL: senescent leaves; FL: flowers; IMG: immature green fruits; MG: mature green fruits; B: color break in fruits; B+4: 4d after color-break; B+7: 7d after color-break. Data with different lowercase letters represent significant differences at P<0.05. Same for Figs. 4 and 5.

    图  4  干旱处理下GT-1基因的表达模式分析

    Figure  4.  Expression of GT-1 under dehydration stress

    图  5  盐处理下GT-1基因的表达分析

    Figure  5.  Expression of GT-1 under salt stress

    图  6  GT-1基因响应植物生长调节剂的表达模式

    **代表在 0.01 水平上与对照差异显著,*代表在 0.05 水平上与对照差异显著。

    Figure  6.  Expressions of GT-1 genes in response to plant growth regulators

    **represents significant difference at P<0.01; *represents significant difference at P<0.05.

    表  1  研究中所用引物信息

    Table  1.   Primers applied

    引物名称Primer names序列(5′ - 3′)Sequences(5′ -3′)
    qSlCAC-FCCTCCGTTGTGATGTAACTGG
    qSlCAC-RATTGGTGGAAAGTAACATCATCG
    qSlEF1α-FTACTGGTGGTTTTGAAGCTG
    qSlEF1α-RAACTTCCTTCACGATTTCATCATA
    qSlGT-21-FGCAATTCGAGGTGAGCTTGAG
    qSlGT-21-RTGTTTCCTTACCCTTGTAACGATT
    qSlGT-24-FTGGAGGTGTTAATATTGGAGGAGG
    qSlGT-24-RTGCATTTACACTGTTCTGGGC
    qSlGT-35-FACATGGAACCGGTGAGCC
    qSlGT-35-RTGCACGCTTTGTCCTTAATCG
    下载: 导出CSV
  • [1] YU C Y, CAI X F, YE Z B, et al. Genome-wide identification and expression profiling analysis of trihelix gene family in tomato [J]. Biochemical and Biophysical Research Communications, 2015, 468(4): 653−659. doi: 10.1016/j.bbrc.2015.11.010
    [2] KAPLAN-LEVY R N, BREWER P B, QUON T, et al. The trihelix family of transcription factors–light, stress and development [J]. Trends in Plant Science, 2012, 17(3): 163−171. doi: 10.1016/j.tplants.2011.12.002
    [3] FLUHR R, KUHLEMEIER C, NAGY F, et al. Organ-specific and light-induced expression of plant genes [J]. Science, 1986, 232(4754): 1106−1112. doi: 10.1126/science.232.4754.1106
    [4] LIU W, ZHANG Y W, LI W, et al. Genome-wide characterization and expression analysis of soybean trihelix gene family [J]. PeerJ, 2020, 8: e8753. doi: 10.7717/peerj.8753
    [5] HARRISON M J, LAWTON M A, LAMB C J, et al. Characterization of a nuclear protein that binds to three elements within the silencer region of a bean chalcone synthase gene promoter [J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(6): 2515−2519. doi: 10.1073/pnas.88.6.2515
    [6] CHATTOPADHYAY S, PUENTE P, DENG X W, et al. Combinatorial interaction of light-responsive elements plays a critical role in determining the response characteristics of light-regulated promoters in Arabidopsis [J]. The Plant Journal:for Cell and Molecular Biology, 1998, 15(1): 69−77. doi: 10.1046/j.1365-313X.1998.00180.x
    [7] LAM E. Domain analysis of the plant DNA-binding protein GT1a: Requirement of four putative alpha-helices for DNA binding and identification of a novel oligomerization region [J]. Molecular and Cellular Biology, 1995, 15(2): 1014−1020. doi: 10.1128/MCB.15.2.1014
    [8] LE GOURRIEREC J, LI Y F, ZHOU D X. Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA-TBP-TATA complex [J]. The Plant Journal:for Cell and Molecular Biology, 1999, 18(6): 663−668. doi: 10.1046/j.1365-313x.1999.00482.x
    [9] HIRATSUKA K, WU X, FUKUZAWA H, et al. Molecular dissection of GT-1 from Arabidopsis [J]. The Plant Cell, 1994, 6(12): 1805−1813.
    [10] LIU X Q, ZHANG H, MA L, et al. Genome-wide identification and expression profiling analysis of the trihelix gene family under abiotic stresses in Medicago truncatula [J]. Genes, 2020, 11(11): 1389. doi: 10.3390/genes11111389
    [11] WANG W L, WU P, LIU T K, et al. Genome-wide analysis and expression divergence of the trihelix family in Brassica rapa: Insight into the evolutionary patterns in plants [J]. Scientific Reports, 2017, 7(1): 1−15. doi: 10.1038/s41598-016-0028-x
    [12] LI K Y, DUAN L L, ZHANG Y B, et al. Genome-wide identification and expression profile analysis of trihelix transcription factor family genes in response to abiotic stress in Sorghum[Sorghum bicolor (L. ) Moench [J]. BMC Genomics, 2021, 22(1): 738. doi: 10.1186/s12864-021-08000-7
    [13] MARÉCHAL E, HIRATSUKA K, DELGADO J, et al. Modulation of GT-1 DNA-binding activity by calcium-dependent phosphorylation [J]. Plant Molecular Biology, 1999, 40(3): 373−386. doi: 10.1023/A:1006131330930
    [14] WANG R, HONG G F, HAN B. Transcript abundance of rml1, encoding a putative GT1-like factor in rice, is up-regulated by Magnaporthe grisea and down-regulated by light [J]. Gene, 2004, 324: 105−115. doi: 10.1016/j.gene.2003.09.008
    [15] PARK H C, KIM M L, KANG Y H, et al. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor [J]. Plant Physiology, 2004, 135(4): 2150−2161. doi: 10.1104/pp.104.041442
    [16] LI N, WEI S T, CHEN J, et al. OsASR2 regulates the expression of a defence-related gene, Os2H16, by targeting the GT-1 cis-element [J]. Plant Biotechnology Journal, 2018, 16(3): 771−783. doi: 10.1111/pbi.12827
    [17] YU C Y, SONG L L, SONG J W, et al. ShCIGT, a Trihelix family gene, mediates cold and drought tolerance by interacting with SnRK1 in tomato [J]. Plant Science, 2018, 270: 140−149. doi: 10.1016/j.plantsci.2018.02.012
    [18] ZHU M K, CHEN G P, ZHANG J L, et al. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum) [J]. Plant Cell Reports, 2014, 33(11): 1851−1863. doi: 10.1007/s00299-014-1662-z
    [19] KOU E F, HUANG X M, ZHU Y N, et al. Crosstalk between auxin and gibberellin during stalk elongation in flowering Chinese cabbage [J]. Scientific Reports, 2021, 11(1): 1−9. doi: 10.1038/s41598-020-79139-8
    [20] YANG Y J, MAO L C, GUAN W L, et al. Exogenous 24-epibrassinolide activates detoxification enzymes to promote degradation of boscalid in cherry tomatoes [J]. Journal of the Science of Food and Agriculture, 2021, 101(6): 2210−2217. doi: 10.1002/jsfa.10840
    [21] CALLEBAUT I, MOSHOUS D, MORNON J, et al. Metallo‐β‐lactamase fold within nucleic acids processing enzymes: The β‐CASP family [J]. Nucleic Acids Research, 2002, 30(16): 3592−3601. doi: 10.1093/nar/gkf470
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  217
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-17
  • 录用日期:  2022-02-17
  • 修回日期:  2022-11-04
  • 网络出版日期:  2023-04-14
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回