• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物工厂中银合欢幼苗生长条件的优化

庄朋静 李娜 刘乐冕 郭毅松 陈剑锋

庄朋静,李娜,刘乐冕,等. 植物工厂中银合欢幼苗生长条件的优化 [J]. 福建农业学报,2023,38(2):183−192 doi: 10.19303/j.issn.1008-0384.2023.02.008
引用本文: 庄朋静,李娜,刘乐冕,等. 植物工厂中银合欢幼苗生长条件的优化 [J]. 福建农业学报,2023,38(2):183−192 doi: 10.19303/j.issn.1008-0384.2023.02.008
ZHUANG P J, LI N, LIU L M, et al. Condition Optimization for Leucaena leucocephala Seedling Growth in Factory [J]. Fujian Journal of Agricultural Sciences,2023,38(2):183−192 doi: 10.19303/j.issn.1008-0384.2023.02.008
Citation: ZHUANG P J, LI N, LIU L M, et al. Condition Optimization for Leucaena leucocephala Seedling Growth in Factory [J]. Fujian Journal of Agricultural Sciences,2023,38(2):183−192 doi: 10.19303/j.issn.1008-0384.2023.02.008

植物工厂中银合欢幼苗生长条件的优化

doi: 10.19303/j.issn.1008-0384.2023.02.008
基金项目: 福州大学“旗山学者”奖励支持计划项目(GXRC-20061);国家自然科学基金面上项目(31971469);晋江市省级海洋产业发展示范县示范项目(JJHYCYXM-01-004)
详细信息
    作者简介:

    庄朋静(1997−),女,硕士研究生,主要从事生态修复研究(E-mail:3128380486@qq.com

    通讯作者:

    刘乐冕(1984−),男,副研究员,主要从事生物资源与环境工程研究(E-mail:lmliu@fzu.edu.cn);陈剑锋(1968−),男,教授,主要从事生物资源与环境工程研究(E-mail:jfchen@fzu.edu.cn)

  • 中图分类号: Q948

Condition Optimization for Leucaena leucocephala Seedling Growth in Factory

  • 摘要:   目的  探明银合欢幼苗在植物工厂中水培的最优生长条件,为生产优质的银合欢苗奠定基础。  方法  分析不同光照时长(12、16、20、24 h·d−1)、光照强度(100、200、300、400 μmol·m−2·s−1)、营养液盐度(7‰、15‰、20‰、25‰)、氮浓度(7.5、15、30、60 mmol·L−1)和磷浓度(0.5、1、2、4 mmol·L−1)下银合欢幼苗的形态和生理指标,优化银合欢幼苗的生长条件。  结果  单因素试验结果表明,随着光照时长、光照强度、氮浓度或磷浓度的增加,银合欢幼苗的形态指标呈现先增后降的趋势。幼苗定植35 d后,在光照时长20 h·d−1下幼苗鲜重(5.61±0.11) g·株−1,比12、24 h·d−1分别增加60.0%和14.6%;光强200 μmol·m−2·s−1下鲜重(6.55±0.10) g·株−1,比100、400 μmol·m−2·s−1分别增加21.5%和62.1%;氮浓度15 mmol·L−1下鲜重(4.32±0.10) g·株−1,比7.5、60 mmol·L−1分别增加6.1%和108.6%;磷浓度1 mmol·L−1下鲜重(5.65±0.21) g·株−1,比0.5、4 mmol·L−1分别增加40.9%和64.7%。银合欢幼苗的叶绿素含量、叶绿素荧光参数和抗氧化酶活性也表现出相似的规律。相比之下,随着营养液盐度的增加,银合欢幼苗的形态指标、叶绿素含量、叶绿素荧光参数和抗氧化酶活性均呈现下降趋势。在盐度7‰时鲜重、干重、株高、根长和总叶绿素含量均达到最大值,分别为(8.95±0.05) g·株−1、(2.16±0.16) g·株−1、(31.17±1.67) cm、(60.67±0.93) cm、(1.72±0.06) mg·g−1。7‰盐度下幼苗的叶绿素荧光参数和抗氧化酶活性指标也较好。  结论  银合欢幼苗在光照时长20 h·d−1、光强200 μmol·m−2·s−1、盐度7‰、氮浓度15 mmol·L−1、磷浓度1 mmol·L−1 的条件下,其形态指标、叶绿素含量、抗氧化酶活性及叶绿素荧光参数等指标较优,最适合银合欢幼苗生长。
  • 表  1  银合欢在不同光照时长下的表观生长指标和生理指标

    Table  1.   Growth and physiological indices of Leucaena leucocephala under different light duration

    参数      Parameters      光照时长 Duration of light/(h·d−1
    12162024
    鲜重 Fresh weight/(g·株−1 3.54±0.22 d 4.14±0.06 c 5.66±0.11 a 4.94±0.13 b
    干重 Dry weight/(g·株−1 0.57±0.05 c 0.81±0.03 b 1.13±0.06 a 0.92±0.08 b
    株高 Shoot height/(cm·株−1 17.00±0.58 a 13.33±0.60 b 11.17±0.44 c 10.43±0.09 c
    根长 Root length/(cm·株−1 23.00±1.00 c 38.50±0.29 a 30.50±0.50 b 24.50±0.76 c
    总叶绿素 Total chlorophyll/ (mg·g−1) 0.94±0.08 b 1.09±0.14 ab 1.30±0.06 a 1.26±0.09 a
    叶绿素a Chlorophyll a/(mg·g−1 0.76±0.07 b 0.89±0.08 ab 1.04±0.08 a 1.01±0.07 a
    叶绿素b Chlorophyll b/(mg·g−1 0.18±0.01 a 0.19±0.07 a 0.26±0.01 a 0.25±0.01 a
    超氧化物歧化酶 SOD/(U·g−1 564.7±1.6 c 572.9±3.5 c 582.7±1.4 b 590.2±1.6 a
    过氧化物酶 POD/(U·g−1 242.5±6.6 c 600.1±30.5 b 680.3±20.8 b 823.7±39.8 a
    丙二醛 MDA/(nmol·g−1) 12.63±0.69 b 12.49±1.36 b 12.44±0.93 b 16.69±1.34 a
    非光化学淬灭系数 NPQ 0.21±0.05 b 0.20±0.02 b 0.21±0.03 b 0.50±0.03 a
    光化学效率 Fv/Fm 0.68±0.01 c 0.75±0.01 a 0.71±0.01 b 0.61±0.01 d
    光化学淬灭系数 qP 0.78±0.02 b 0.88±0.02 a 0.88±0.01 a 0.79±0.03 b
    电子传递速率 ETR 37.40±0.68 ab 41.10±0.43 a 39.62±1.19 a 33.97±2.22 b
    同行不同小写字母代表不同处理之间显著差异(P <0.05),下同。Datas with different lowercase letters on the same row represent significant differences between treatments (P < 0.05). Same for below.
    下载: 导出CSV

    表  2  银合欢在不同光照强度下的表观生长指标和生理指标

    Table  2.   Growth and physiological indices of L. leucocephala under different light intensities

    参数   Parameters   光照强度 Light intensity/(μmol·m−2·s−1)
    100200300400
    鲜重 Fresh weight/(g·株−1 5.39±0.22 b 6.55±0.10 a 6.41±0.07 a 4.04±0.15 c
    干重 Dry weight/(g·株−1 1.16±0.08 bc 1.52±0.12 a 1.26±0.05 b 0.94±0.04 c
    株高 Shoot height/(cm·株−1 14.27±0.14 a 14.07±0.22 a 12.77±0.40 b 12.90±0.47 b
    根长 Root length/(cm·株−1 35.33±2.77 a 36.93±1.88 a 34.67±2.09 a 34.17±0.44 a
    总叶绿素 Total chlorophyll/ (mg·g−1) 1.38±0.08 b 1.80±0.10 a 1.28±0.06 b 1.25±0.05 b
    叶绿素a Chlorophyll a/ (mg·g−1) 1.12±0.06 b 1.44±0.08 a 1.03±0.03 b 0.97±0.07 b
    叶绿素b Chlorophyll b/ (mg·g−1) 0.26±0.02 a 0.36±0.02 a 0.25±0.07 a 0.28±0.04 a
    超氧化物歧化酶 SOD/(U·g−1 562.6±6.9 a 559.5±3.1 a 560.4±4.9 a 569.4±2.2 a
    过氧化物酶 POD/(U·g−1 482.6±13.3 c 761.9±25.5 b 815.4±22.6 b 960.7±28.8 a
    丙二醛 MDA/(nmol·g−1) 22.98±0.86 a 21.97±1.26 a 21.69±1.16 a 22.40±1.92 a
    非光化学淬灭系数 NPQ 0.34±0.02 c 0.38±0.02 bc 0.42±0.01 ab 0.48±0.01 a
    光化学效率 Fv/Fm 0.79±0.01 a 0.75±0.01 b 0.70±0.01 c 0.68±0.01 d
    光化学淬灭系数 qP 0.87±0.01 a 0.80±0.01 b 0.79±0.02 b 0.51±0.01 c
    电子传递速率 ETR 67.13±3.61 bc 76.51±3.13 ab 84.35±1.73 a 60.46±2.99 c
    下载: 导出CSV

    表  3  银合欢在不同盐度下的表观生长指标和生理指标

    Table  3.   Growth and physiological indices of L. leucocephala at different salinities

    参数    Parameters    盐度 Salinity/‰
    7152025
    鲜重 Fresh weight/(g·株−1 8.95±0.05 a 7.94±0.14 b 4.44±0.38 c 2.33±0.15 d
    干重 Dry weight/(g·株−1 2.16±0.16 a 1.58±0.03 b 0.90±0.02 c 0.32±0.01 d
    株高 Shoot height/(cm·株−1 31.17±1.67 a 24.83±0.44 b 19.00±0.50 c 12.17±0.33 d
    根长 Root length/(cm·株−1 60.67±0.93 a 47.67±1.36 b 26.40±0.90 c 19.17±1.48 d
    总叶绿素 Total chlorophyll/(mg·g−1 1.72±0.06 a 1.64±0.11 ab 1.44±0.06 b 1.09±0.01 c
    叶绿素a Chlorophyll a/(mg·g−1 1.35±0.05 a 1.29±0.03 a 1.16±0.05 b 0.88±0.01 c
    叶绿素b Chlorophyll b/(mg·g−1 0.38±0.01 a 0.35±0.10 a 0.29±0.01 a 0.21±0.01 a
    超氧化物歧化酶 SOD/(U·g−1 584.3±4.0 a 578.8±9.3 a 576.0±8.7 a 565.1±7.4 a
    过氧化物酶 POD/(U·g−1 476.9±12.0 b 567.1±14.1 a 483.2±7.9 b 469.1±9.4 b
    丙二醛 MDA/(nmol·g−1 11.51±0.41 b 14.33±1.71 b 19.94±1.48 a 20.49±1.60 a
    非光化学淬灭系数 NPQ 0.19±0.04 b 0.27±0.06 b 0.87±0.07 a 1.07±0.14 a
    光化学效率 Fv/Fm 0.79±0.01 a 0.77±0.01 a 0.77±0.01 a 0.72±0.01 b
    光化学淬灭系数 qP 0.87±0.04 a 0.80±0.01 a 0.80±0.03 a 0.79±0.02 a
    电子传递速率 ETR 44.61±2.20 a 41.43±0.16 a 35.47±2.04 b 32.66±2.06 b
    下载: 导出CSV

    表  4  银合欢在不同氮浓度下的表观生长指标和生理指标

    Table  4.   Growth and physiological indices of L. leucocephala at different nitrogen concentrations

    参数    Parameters    氮浓度 Nitrogen concentration/(mmol·L−1
    7.5153060
    鲜重 Fresh weight/(g·株−1 4.07±0.08 a 4.32±0.10 a 3.38±0.13 b 2.07±0.13 c
    干重 Dry weight/(g·株−1 0.66±0.01 b 0.84±0.05 a 0.56±0.05 b 0.38±0.02 c
    株高 Shoot height/(cm·株−1 15.13±0.23 b 21.73±0.89 a 15.83±0.17 b 10.67±0.84 c
    根长 Root length/(cm·株−1 27.17±1.09 a 27.67±0.44 a 27.00±4.31 a 24.73±0.62 a
    总叶绿素 Total chlorophyll/(mg·g−1 1.23±0.01 b 1.33±0.08 ab 1.46±0.03 a 1.28±0.03 b
    叶绿素a Chlorophyll a/(mg·g−1 0.99±0.01 b 1.07±0.07 ab 1.17±0.02 a 1.04±0.03 b
    叶绿素b Chlorophyll b/(mg·g−1 0.24±0.01 b 0.26±0.01 b 0.29±0.01 a 0.24±0.01 b
    超氧化物歧化酶 SOD/(U·g−1 534.8±4.3 a 555.0±3.8 a 534.2±7.4 a 530.2±13.4 a
    过氧化物酶 POD/(U·g−1 529.3±4.9 b 487.7±12.6 bc 468.9±3.9 c 591.2±25.8 a
    丙二醛 MDA/(nmol·g−1 14.21±1.31 a 13.92±1.01 a 16.19±1.31 a 16.12±0.09 a
    非光化学淬灭系数 NPQ 0.52±0.03 a 0.38±0.02 b 0.51±0.02 a 0.51±0.04 a
    光化学效率 Fv/Fm 0.70±0.01 b 0.76±0.01 a 0.69±0.01 b 0.68±0.01 c
    光化学淬灭系数 qP 0.91±0.01 a 0.92±0.01 a 0.70±0.02 c 0.77±0.02 b
    电子传递速率 ETR 38.30±0.71 c 60.67±0.29 a 39.60±0.30 c 42.71±1.28 b
    下载: 导出CSV

    表  5  银合欢在不同磷浓度下的表观生长指标和生理指标

    Table  5.   Growth and physiological indices of L. leucocephala at different phosphorus concentrations

    参数Parameters磷浓度 Phosphorus concentration/(mmol·L−1
    0.5124
    鲜重 Fresh weight/(g·株−1 4.01±0.24 b 5.65±0.21 a 4.04±0.16 b 3.43±0.22 b
    干重 Dry weight/(g·株−1 0.71±0.05 b 0.98±0.05 a 0.69±0.05 bc 0.54±0.05 c
    株高 Shoot height/(cm·株−1 13.33±0.84 b 15.63±0.58 a 15.27±0.39 ab 11.07±0.58 c
    根长 Root length/(cm·株−1 36.20±0.35 a 37.57±1.10 a 32.50±0.58 b 32.47±1.50 b
    总叶绿素 Total chlorophyll/(mg·g−1 1.53±0.07 b 1.87±0.11 a 1.58±0.07 b 1.56±0.05 b
    叶绿素a Chlorophyll a/(mg·g−1 1.23±0.05 b 1.44±0.05 a 1.25±0.04 b 1.23±0.04 b
    叶绿素b Chlorophyll b/(mg·g−1 0.29±0.04 a 0.42±0.08 a 0.33±0.05 a 0.34±0.01 a
    超氧化物歧化酶 SOD/(U·g−1 554.0±8.22 a 571.2±8.80 a 573.8±6.22 a 567.6±6.35 a
    过氧化物酶POD/(U·g−1 661.0±6.9 b 807.2±16.5 a 828.2±34.8 a 604.6±12.0 b
    丙二醛 MDA/(nmol·g−1 17.96±0.6 a 18.68±0.4 a 18.70±1.6 a 19.17±0.2 a
    非光化学淬灭系数 NPQ 0.56±0.05 b 0.38±0.02 c 0.56±0.04 b 1.25±0.08 a
    光化学效率 Fv/Fm 0.76±0.01 a 0.77±0.01 a 0.70±0.01 b 0.46±0.01 c
    光化学淬灭系数 qP 0.71±0.03 b 0.84±0.01 a 0.62±0.02 c 0.76±0.01 b
    电子传递速率 ETR 39.91±2.69 b 54.09±0.60 a 37.11±2.43 b 24.20±0.62 c
    下载: 导出CSV
  • [1] 赵英, 陈小斌, 蒋昌顺. 我国银合欢研究进展 [J]. 热带农业科学, 2006, 26(4):55−58,63. doi: 10.3969/j.issn.1009-2196.2006.04.019

    ZHAO Y, CHEN X B, JIANG C S. Advances on studies of Leucaena Bentham in China [J]. Chinese Journal of Tropical Agriculture, 2006, 26(4): 55−58,63.(in Chinese) doi: 10.3969/j.issn.1009-2196.2006.04.019
    [2] GRAAMANS L, BAEZA E, VAN DEN DOBBELSTEEN A, et al. Plant factories versus greenhouses: Comparison of resource use efficiency [J]. Agricultural Systems, 2018, 160: 31−43. doi: 10.1016/j.agsy.2017.11.003
    [3] 崔羽, 严思维, 吴建召, 等. 不同林龄银合欢生长季土壤呼吸影响因素分析 [J]. 武夷学院学报, 2018, 37(9):31−38.

    CUI Y, YAN S W, WU J Z, et al. Analyzing the factors that affect soil respiration during the growing season in Leucaena leucocephala (Lam.) de wit [J]. Journal of Wuyi University, 2018, 37(9): 31−38.(in Chinese)
    [4] 徐文栋, 李春兰. 密闭式植物工厂内大黄育苗技术研究 [J]. 南方农机, 2022, 53(12):25−27,31.

    XU W D, LI C L. Study on seedling raising technology of Dahuang in closed plant factory [J]. South Agricultural Machinery, 2022, 53(12): 25−27,31.(in Chinese)
    [5] 黄思杰. 植物工厂条件下不同基质对番茄产量和品质的影响[D]. 南京: 南京农业大学, 2013.

    HUANG S J. Effects of different substrates on yield and quality of tomato cultivated in plant factory[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
    [6] 苗妍秀, 曲梅, 李伟, 等. 植物工厂中不同供液方式对辣椒育苗的影响 [J]. 长江蔬菜, 2012(6):33−36. doi: 10.3865/j.issn.1001-3547.2012.06.010

    MIAO Y X, QU M, LI W, et al. Effects of different irrigation systems on pepper seedling in plant factory [J]. Journal of Changjiang Vegetables, 2012(6): 33−36.(in Chinese) doi: 10.3865/j.issn.1001-3547.2012.06.010
    [7] 陈永快, 王涛, 兰婕, 等. 植物工厂内LED光调控在作物栽培中的研究进展 [J]. 江苏农业科学, 2020, 48(23):40−46.

    CHEN Y K, WANG T, LAN J, et al. Research progress of LED light regulation in plant factories in crop cultivation [J]. Jiangsu Agricultural Sciences, 2020, 48(23): 40−46.(in Chinese)
    [8] 刘文科, 吴启保, 查凌雁. LED连续光照的植物生理作用及植物工厂应用策略 [J]. 照明工程学报, 2020, 31(5):5−8,21. doi: 10.3969/j.issn.1004-440X.2020.05.002

    LIU W K, WU Q B, ZHA L Y. Application strategies and physiological mechanisms of LED continuous light for plant factory with artificial light [J]. China Illuminating Engineering Journal, 2020, 31(5): 5−8,21.(in Chinese) doi: 10.3969/j.issn.1004-440X.2020.05.002
    [9] 季延海. 韭菜营养液栽培的关键技术[D]. 南京: 南京农业大学, 2014.

    JI Y H. The key technology of nutrient solutions cultivation of Chinese chives[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese)
    [10] 刘青. 营养液配方对盆栽水芹生长和品质的影响[D]. 扬州: 扬州大学, 2020.

    LIU Q. Effect of nutrient solution formula on growth and quality of the potted water dropwort (Oenanthe javanica (Roxb) Wall. )[D]. Yangzhou: Yangzhou University, 2020. (in Chinese)
    [11] 乔源. 氮磷钾供应对水培芹菜产量、品质及元素利用效率影响的研究[D]. 杨凌: 西北农林科技大学, 2016.

    QIAO Y. Effects of NPK on yield, quality and element utilization efficiency of hydroponic celery[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
    [12] 李莉萍, 应东山, 王琴飞, 等. 银合欢种子研究进展 [J]. 热带农业科学, 2014, 34(2):21−26.

    LI L P, YING D S, WANG Q F, et al. Research progress of Leucaena seeds [J]. Chinese Journal of Tropical Agriculture, 2014, 34(2): 21−26.(in Chinese)
    [13] 蔡克强, 黄维南. 银合欢幼苗根瘤固氮特性研究 [J]. 植物生理学通讯, 1986(3):35−37.

    CAI K Q, HUANG W N. Nitrogen fixation characteristics of nodules of Acacia seedlings [J]. Plant Physiology Communications, 1986(3): 35−37.(in Chinese)
    [14] 杨韡韡. 矿山废弃地生态修复技术与效应研究——以河南省鲁山县某铁矿区为例[D]. 郑州: 华北水利水电学院, 2012.

    YANG W W. Ecological restoration technology and effect research of abandoned mines ——Take an iron mining area in Lushan Countyof Henan Province for example[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2012. (in Chinese)
    [15] 过聪, 关伟, 曾祥国, 等. 不同营养液配方对水培白蝴蝶合果芋的影响 [J]. 湖北农业科学, 2020, 59(23):87−93.

    GUO C, GUAN W, ZENG X G, et al. Influence of different nutrient solution formulations on hydroponic Syngonium podoopphyllum cv. White Butterfly [J]. Hubei Agricultural Sciences, 2020, 59(23): 87−93.(in Chinese)
    [16] LU T, YU H J, LI Q, et al. Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L. ) seedlings [J]. Frontiers in Plant Science, 2019, 10: 490. doi: 10.3389/fpls.2019.00490
    [17] VENISSE J S, PAULIN J P, RISSET M N. Mechanisms underlying disease and resistance in host plants of fire blight [J]. Acta Hortic, 2002, 590(72): 467−468.
    [18] LACAN D, BACCOU J C. High levels of antioxidant enzymes correlate with delayed senescence in nonnetted muskmelon fruits [J]. Planta, 1998, 204(3): 377−382. doi: 10.1007/s004250050269
    [19] 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006.
    [20] 刘杰, 胡笑涛, 王文娥, 等. 光强和光周期对水培生菜光合及叶绿素荧光特性的影响 [J]. 西南农业学报, 2019, 32(8):1784−1790.

    LIU J, HU X T, WANG W E, et al. Effects of light intensity and photoperiod on photosynthetic characteristics and chlorophyll fluorescence of hydroponic lettuce [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(8): 1784−1790.(in Chinese)
    [21] 闫晓花, 郁继华. LED补光对温室黄瓜幼苗抗衰老及抗氧化酶系统的影响 [J]. 中国沙漠, 2016, 36(2):392−398.

    YAN X H, YU J H. Effects of supplemental LED light on photosynthetic pigment contents and antioxidant enzyme activities of cucumber seedling leaves [J]. Journal of Desert Research, 2016, 36(2): 392−398.(in Chinese)
    [22] HALLIDAY K J, MARTÍNEZ-GARCÍA J F, JOSSE E M. Integration of light and auxin signaling [J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(6): a001586.
    [23] 张悦. 不同光质、光照强度及光周期对苦苣生长特性及营养品质的影响[D]. 武汉: 华中农业大学, 2021.

    ZHANG Y. Effects of different light quality, light intensity and photoperiod on growth characteristics and nutritional quality of chicory[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
    [24] ALAM M, KHAN M A, IMTIAZ M, et al. Indole-3-Acetic Acid Rescues Plant Growth and Yield of Salinity Stressed Tomato (Lycopersicon esculentum L.) [J]. Gesunde Pflanzen, 2020, 72: 87−95. doi: 10.1007/s10343-019-00489-z
    [25] MADANI S M, PIRI S, SEDAGHATHOOR S. The response of three mandarin cultivars grafted on sour orange rootstock to salinity stress [J]. International Journal of Fruit Science, 2022, 22(1): 264−274. doi: 10.1080/15538362.2022.2036669
    [26] BHUTTA T S, ZAFAR-UL-HYE M, SHAABAN M, et al. Influence of plant growth promoting rhizobacterial inoculation on wheat productivity under soil salinity stress [J]. Phyton, 2019, 88(2): 119. doi: 10.32604/phyton.2019.06570
    [27] GERAMI M, MAJIDIAN P, GHORBANPOUR A, et al. Stevia rebaudiana Bertoni responses to salt stress and chitosan elicitor [J]. Physiology and Molecular Biology of Plants:an International Journal of Functional Plant Biology, 2020, 26(5): 965−974. doi: 10.1007/s12298-020-00788-0
    [28] SAYYAD-AMIN P, JAHANSOOZ M R, BORZOUEI A, et al. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress [J]. Journal of Biological Physics, 2016, 42(4): 601−620. doi: 10.1007/s10867-016-9428-1
    [29] JAYAWARDENA D M, HECKATHORN S A, BOLDT J K. Effects of Elevated Carbon Dioxide and Chronic Warming on Nitrogen (N)-Uptake Rate, -Assimilation, and -Concentration of Wheat [J]. Plants (Basel)., 2020, 9(12): 1689.
    [30] CECHIN I, DE FÁTIMA F T. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse [J]. Plant Science, 2004, 166(5): 1379−1385. doi: 10.1016/j.plantsci.2004.01.020
    [31] CHEN J, LIU S D, ZHANG S P, et al. Nitrogen modulates cotton root morphology by affecting abscisic acid (ABA) and salicylic acid (SA) content [J]. Archives of Agronomy and Soil Science, 2021, 67(12): 1722−1738. doi: 10.1080/03650340.2020.1807518
    [32] FORNARI E Z, GAVIRAGHI L, BASSO C J, et al. Relationship between photosynthetic pigments and corn production under nitrogen sources [J]. Pesquisa Agropecuária Tropical, 2020, 50: 1−9.
    [33] CHEN G, WANG L, FABRICE M R, et al. Physiological and nutritional responses of pear seedlings to nitrate concentrations [J]. Frontiers in Plant Science, 2018: 1679.
    [34] CRUZ J L, MOSQUIM P R, PELACANI C R, et al. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency [J]. Plant and Soil, 2003, 257(2): 417−423. doi: 10.1023/A:1027353305250
    [35] ZANGANI E, AFSAHI K, SHEKARI F. Nitrogen and Phosphorus Addition to Soil Improves Seed Yield, Foliar Stomatal Conductance, and the Photosynthetic Response of Rapeseed (Brassica napus L.) [J]. Agriculture., 2021, 11(6): 483. doi: 10.3390/agriculture11060483
    [36] TU P F, DENG L S, LI J, et al. Effect of phosphorus on N, P, K, Mg accumulation and plant growth of different citrus rootstocks [J]. Applied Ecology and Environmental Research, 2018, 16(1): 819−836. doi: 10.15666/aeer/1601_819836
    [37] JOHNSON N C. Responses of Salsola kali and Panicum virgatum to mycorrhizal fungi, phosphorus and soil organic matter: implications for reclamation [J]. Journal of Applied Ecology, 1998, 35: 86−94. doi: 10.1046/j.1365-2664.1998.00277.x
    [38] SOBCZAK A, KOWALCZYK K, GAJC-WOLSKA J, et al. Growth, yield and quality of sweet pepper fruits fertilized with polyphosphates in hydroponic cultivation with LED lighting [J]. Agronomy, 2020, 10(10): 1560. doi: 10.3390/agronomy10101560
    [39] CETNER M D, KALAJI H M, BORUCKI W. Phosphorus deficiency affects the I-step of chlorophyll a fluorescence induction curve of radish [J]. Photosynthetica, 2020, 58(2): 671−681.
  • 加载中
表(5)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  98
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 修回日期:  2022-12-13
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回