• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同稻田生态种养模式对土壤理化性质及综合肥力的影响

张晓龙 杨倩楠 李祥东 陈静 王超 陈金洁 张池 刘科学

张晓龙,杨倩楠,李祥东,等. 不同稻田生态种养模式对土壤理化性质及综合肥力的影响 [J]. 福建农业学报,2023,38(2):202−209 doi: 10.19303/j.issn.1008-0384.2023.02.010
引用本文: 张晓龙,杨倩楠,李祥东,等. 不同稻田生态种养模式对土壤理化性质及综合肥力的影响 [J]. 福建农业学报,2023,38(2):202−209 doi: 10.19303/j.issn.1008-0384.2023.02.010
ZHANG X L, YANG Q N, LI X D, et al. Effects of Crop/Animal Co-cultivations on Physiochemical Properties and Fertility of Rice Paddy Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(2):202−209 doi: 10.19303/j.issn.1008-0384.2023.02.010
Citation: ZHANG X L, YANG Q N, LI X D, et al. Effects of Crop/Animal Co-cultivations on Physiochemical Properties and Fertility of Rice Paddy Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(2):202−209 doi: 10.19303/j.issn.1008-0384.2023.02.010

不同稻田生态种养模式对土壤理化性质及综合肥力的影响

doi: 10.19303/j.issn.1008-0384.2023.02.010
基金项目: 广东省自然科学基金项目(2021A1515011543);广东省教育科学“十三五”规划项目(2020XJK116);广州新华学院校级自然科学类重点项目(2020KYZD02)
详细信息
    作者简介:

    张晓龙(1995−)男,硕士研究生,主要从事土地资源与管理研究(E-mail:zxl1995cj@126.com

    通讯作者:

    刘科学(1980− )男,博士,副教授,主要从事土地整治与生态修复研究(E-mail:28257448@qq.com

  • 中图分类号: S511

Effects of Crop/Animal Co-cultivations on Physiochemical Properties and Fertility of Rice Paddy Soil

  • 摘要:   目的  定量评价不同生态种养模式对稻田土壤理化性状及综合肥力的影响,以期为华南地区稻田生态种养模式的选择提供理论依据。  方法  通过主成分分析法定量评价稻鸭(RD)、稻鱼(RF)、稻虾(RS)3种生态种养模式和常规种植(CK)稻田模式的土壤综合肥力的差异,明确影响稻田土壤综合肥力的主要影响因子。  结果  不同生态种养模式均可有效降低土壤容重,提高土壤孔隙度,缓解土壤酸化,对提高土壤养分和有机碳含量也具有较为显著的效果,其中0–10 cm表层土壤的孔隙度、有机碳、全氮、全磷、全钾、碱解氮、速效磷、速效钾含量均为RD最高或并列最高。土壤综合肥力主成分分析结果显示,0–10 cm表层土壤肥力得分排序为RD > RF> RS > CK,10–20 cm亚表层土壤为RD > RF > CK > RS,并且土壤容重、有机碳、孔隙度、胡敏素碳、全氮和碱解氮为稻田土壤肥力的主要贡献性指标,全钾、pH、速效钾、全磷、富里酸碳、胡敏酸碳和有效磷为次要贡献性指标。  结论  整体来看,RD为培肥稻田土壤的最佳模式,RF其次,RS的效果较差。因此,华南地区稻田土壤培肥可将RD作为优先考虑的对象,或者结合现实情况合理选择其他生态种养模式。
  • 图  1  不同生态模式对稻田土壤有机碳及其组分含量的影响

    不同小写字母表示不同模式间差异显著(P<0.05)。图2同。

    Figure  1.  Effects of ecological co-cultivations on content and composition of organic carbon in rice paddy soil

    Data with different lowercase letters indicate significant differences between co-cultivations (P<0.05). Same for Fig. 2.

    图  2  不同生态模式对稻田土壤腐殖质结构特征的影响

    Figure  2.  Effects of ecological co-cultivations on humus in rice paddy soil

    表  1  稻田共育品种、数量规格

    Table  1.   Co-cultivating animals, quantities, and specifications on rice paddy field

    处理Treatment共育品种Co-breeding variety
    品种Variety数量Quantity规格Specification
    稻鸭RD中山麻鸭300 只·hm−2200 g·只−1
    稻鱼RF鲫鱼 6000 尾·hm−225.0 g·尾−1
    稻虾RS克式原螯虾 777400 尾·hm−23.5 g·尾−1
    对照CK
    下载: 导出CSV

    表  2  不同生态模式对稻田土壤机械组成、质地、土壤容重和孔隙度的影响

    Table  2.   Effects of ecological co-cultivations on structure, texture, bulk density, and porosity of rice paddy soil

    处理Treatment机械组成Mechanical composition质地Texture容重Bulk density/(g·cm−3孔隙度Porosity/%
    < 0.002 mm黏粒Clay /%0.002~0.05 mm粉粒Silt/%> 0.05 mm砂粒Sand /%
    0–10 cmRD2.53±0.09 a70.79±0.66 c26.67±0.69 b粉(砂)壤土Silty (sandy) loam1.30±0.01 d53.53±0.24 a
    RF2.33±0.09 a83.47±0.21 a14.20±0.20 d粉(砂)土Silt (sandy) soil1.32±0.01 b50.67±0.34 c
    RS2.19±0.05 a68.61±0.12 d29.21±1.12 a粉(砂)壤土Silty (sandy) loam1.31±0.01 c52.64±0.13 b
    CK2.36±0.17 a79.17±0.10 b18.47±0.20 c粉(砂)壤土Silty (sandy) loam1.33±0.01 a49.83±0.01 d
    10–20 cmRD2.49±0.12 a73.25±0.19 b24.26±0.20 b粉(砂)壤土Silty (sandy) loam1.33±0.01 b49.48±0.46 b
    RF2.06±0.15 b87.73±0.14 a10.20±0.16 d粉(砂)土Silt (sandy) soil1.34±0.01 ab49.30±0.27 b
    RS2.41±0.10 ab66.80±0.35 c30.78±1.38 a粉(砂)壤土Silty (sandy) loam1.34±0.01 ab51.46±0.57 a
    CK2.65±0.07 a75.95±1.48 b21.40±1.44 c粉(砂)壤土Silty (sandy) loam1.35±0.01 a48.41±0.37 b
    同列不同小写字母表示相同土层不同模式间差异显著(P<0.05)。表3同。Data with different lowercase letters on same column indicate significant differences in same soil layers between different co-cultivations (P<0.05). Same for Table 3.
    下载: 导出CSV

    表  3  不同生态模式对稻田土壤pH和养分含量的影响

    Table  3.   Effects of ecological co-cultivations on pH and nutrients in rice paddy soil

    处理TreatmentpH全氮TNTotal nitrogen/(g·kg−1全磷TPTotal phosphorus/ (g·kg−1全钾TKTotal potassium/ (g·kg−1碱解氮ANAvailable Nitrogen/(mg·kg−1)速效磷APAvailable phosphorus/(mg·kg−1)速效钾AKAvailable potassium/(mg·kg−1)
    0–10 cmRD5.47±0.02 b0.97±0.05 a0.70±0.04 a7.77±0.17 a104.43±1.00 a93.27±0.65 a120.00±0.58 a
    RF5.00±0.04 c0.81±0.02 b0.68±0.03 a6.63±0.26 b95.19±1.09 b81.37±1.07 b106.67±1.67 b
    RS5.74±0.01a0.85±0.01 b0.52±0.05 b6.37±0.03 b90.17±0.48 c68.47±0.52 c118.33±1.67 a
    CK4.67±0.01 d0.75±0.02 b0.53±0.01 b6.16±0.09 b84.77±0.52 d54.43±0.65 d118.32±1.67 a
    10–20 cmRD4.63±0.01 c0.91±0.01 a0.67±0.01 a7.03±0.13 a62.40±0.90 a97.17±0.68 a106.67±1.67 b
    RF4.87±0.04 b0.76±0.04 b0.30±0.04 c5.90±0.15 b54.97±0.73 b73.30±1.46 b96.67±1.67 c
    RS5.72±0.01 a0.82±0.03 b0.47±0.03 b5.65±0.13 b47.13±0.47 c42.77±0.33 d131.67±1.67 a
    CK4.24±0.02 d0.66±0.02 c0.43±0.06 b5.63±0.18 b47.83±0.17 c68.47±0.75 c76.67±1.67 d
    下载: 导出CSV

    表  4  肥力指标主成分分析

    Table  4.   PCA on soil fertility indicators

    项目Item主成分Principal component
    主成分1PC1主成分2PC2主成分3PC3
    因子载荷Factor loading
    Z4−容重Bulk density(BD)−0.97−0.05−0.15
    Z13−有机碳Soil organic carbon(SOC)0.960.070.13
    Z5−孔隙度Porosity (SP)0.94−0.24−0.07
    Z16−胡敏素碳Humin carbon(HMC)0.91−0.120.29
    Z7−全氮Total nitrogen(TN)0.890.150.03
    Z9−全钾Total potassium (TK)0.790.560.20
    Z10−碱解氮Alkali-hydrolyzed nitrogen(AN)0.750.240.36
    Z6−pH0.75−0.65−0.10
    Z12−速效钾Available potassium (AK)0.69−0.45−0.22
    Z8−全磷Total phosphorus (TP)0.690.49−0.04
    Z15−富里酸碳Fulvic acid carbon(FAC)0.260.75−0.37
    Z14−胡敏酸碳Humic acid carbon( HAC)0.49−0.730.26
    Z11−速效磷Available phosphorus(AP)0.360.690.41
    Z2−粉粒Silt−0.520.140.81
    Z3−砂粒Sand0.53−0.16−0.81
    Z1−黏粒Clay−0.010.63−0.65
    特征值Eigenvalues8.073.362.46
    贡献率Variance /%50.4220.9915.39
    累积贡献率Cumulative contribution/%50.4271.4186.80
    下载: 导出CSV

    表  5  不同生态模式稻田土壤肥力综合得分

    Table  5.   Comprehensive fertility scores of paddy soil under ecological co-cultivations

    处理Treatment第一主成分 ( F1)The primary principal component 第二主成分得分( F2) The secondary principal component 第三主成分得分( F3)The third principal component 综合得分(F)Composite scores
    得分Scores排名Ranking得分Scores排名Ranking得分Scores排名Ranking得分Scores排名Ranking
    0–10 cmRD4.8711.811−0.0826.601
    RF0.533−0.0732.1312.592
    RS2.532−1.744−0.1330.663
    CK−1.3040.652−0.334−0.984
    10–20 cmRD0.0721.991−0.4921.571
    RF−2.653−1.1932.421−1.422
    RS0.101−3.004−2.114−5.014
    CK−4.1641.562−1.403−4.003
    下载: 导出CSV
  • [1] 陈晓云, 孙文涛, 于凤泉, 等. 稻蟹生态种养模式对稻田土壤肥力及生产效益的影响 [J]. 土壤通报, 2021, 52(5):1165−1172. doi: 10.19336/j.cnki.trtb.2021032202

    CHEN X Y, SUN W T, YU F Q, et al. Effect of rice-crab Co-culture system on soil fertility and economic benefits [J]. Chinese Journal of Soil Science, 2021, 52(5): 1165−1172.(in Chinese) doi: 10.19336/j.cnki.trtb.2021032202
    [2] 刘金根, 杨通, 冯金飞. 稻-虾(克氏原螯虾)综合种养模式的碳足迹分析 [J]. 生态与农村环境学报, 2021, 37(8):1041−1049. doi: 10.19741/j.issn.1673-4831.2020.0808

    LIU J G, YANG T, FENG J F. Carbon footprint analysis of rice-Procambarus clarkii integrated farming system [J]. Journal of Ecology and Rural Environment, 2021, 37(8): 1041−1049.(in Chinese) doi: 10.19741/j.issn.1673-4831.2020.0808
    [3] 郑振宇, 王文成, 李赵嘉, 等. 典型生态农业模式: 稻田种养研究综述 [J]. 江苏农业科学, 2019, 47(4):11−16.

    ZHENG Z Y, WANG W C, LI Z J, et al. A typical ecological agriculture pattern-planting and breeding in rice field: A review [J]. Jiangsu Agricultural Sciences, 2019, 47(4): 11−16.(in Chinese)
    [4] 王晓莹, 冯金侠, 韦生宝, 等. 不同年限稻鸭共作对水体藻类群落结构的影响 [J]. 农业环境科学学报, 2021, 40(9):1860−1868. doi: 10.11654/jaes.2021-0220

    WANG X Y, FENG J X, WEI S B, et al. Effects of different durations of rice-duck farming on the structure of algal communities in water [J]. Journal of Agro-Environment Science, 2021, 40(9): 1860−1868.(in Chinese) doi: 10.11654/jaes.2021-0220
    [5] 吕广动, 黄璜, 王忍, 等. 紫云英还田耦合稻鱼共生对双季水稻群体生长特性及产量的影响 [J]. 生态学杂志, 2020, 39(12):4057−4067. doi: 10.13292/j.1000-4890.202012.005

    LYU G D, HUANG H, WANG R, et al. Effects of Chinese milk vetch returning to the field coupled with rice-fish symbiosis on population growth and yield of double cropping rice [J]. Chinese Journal of Ecology, 2020, 39(12): 4057−4067.(in Chinese) doi: 10.13292/j.1000-4890.202012.005
    [6] 汤伟, 陈灿, 黄璜. 不同稻田种养模式对土壤与水体理化性状及水稻产量的影响分析 [J]. 作物研究, 2021, 35(5):490−495. doi: 10.16848/j.cnki.issn.1001-5280.2021.05.20

    TANG W, CHEN C, HUANG H. Effects of different rice cultivation patterns on soil and water physical and chemical properties and rice yield [J]. Crop Research, 2021, 35(5): 490−495.(in Chinese) doi: 10.16848/j.cnki.issn.1001-5280.2021.05.20
    [7] 怀燕, 王岳钧, 陈叶平, 等. 稻田综合种养模式的化肥减量效应分析 [J]. 中国稻米, 2018, 24(5):30−34. doi: 10.3969/j.issn.1006-8082.2018.05.006

    HUAI Y, WANG Y J, CHEN Y P, et al. Chemical fertilizer reduction analysis of rice-based Co-culture system [J]. China Rice, 2018, 24(5): 30−34.(in Chinese) doi: 10.3969/j.issn.1006-8082.2018.05.006
    [8] 车阳, 程爽, 田晋钰, 等. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异 [J]. 作物学报, 2021, 47(10):1953−1965.

    CHE Y, CHENG S, TIAN J Y, et al. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields [J]. Acta Agronomica Sinica, 2021, 47(10): 1953−1965.(in Chinese)
    [9] 崔荣阳, 刘宏斌, 毛昆明, 等. 洱海流域稻田综合种养对田面水氮素和水稻产量的影响 [J]. 中国土壤与肥料, 2020(1):127−134. doi: 10.11838/sfsc.1673-6257.19057

    CUI R Y, LIU H B, MAO K M, et al. Effects of comprehensive planting and breeding from paddy fields on surface water nitrogen and rice yield in Erhai Basin [J]. Soil and Fertilizer Sciences in China, 2020(1): 127−134.(in Chinese) doi: 10.11838/sfsc.1673-6257.19057
    [10] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
    [11] 刘鑫, 窦森, 李长龙, 等. 开垦年限对稻田土壤腐殖质组成和胡敏酸结构特征的影响 [J]. 土壤学报, 2016, 53(1):137−145.

    LIU X, DOU S, LI C L, et al. Composition of humus and structure of humic acid as a function of age of paddy field [J]. Acta Pedologica Sinica, 2016, 53(1): 137−145.(in Chinese)
    [12] NEBBIOSO A, PICCOLO A. Basis of a humeomics science: Chemical fractionation and molecular characterization of humic biosuprastructures [J]. Biomacromolecules, 2011, 12(4): 1187− 1199. doi: 10.1021/bm101488e
    [13] 张成君, 康文娟, 张翠梅, 等. 基于主成分-聚类分析评价不同轮作模式对土壤肥力的影响 [J]. 水土保持学报, 2020, 34(1):292−300. doi: 10.13870/j.cnki.stbcxb.2020.01.042

    ZHANG C J, KANG W J, ZHANG C M, et al. Evaluation of the effects of different rotation patterns on soil fertility based on principal component-cluster analysis [J]. Journal of Soil and Water Conservation, 2020, 34(1): 292−300.(in Chinese) doi: 10.13870/j.cnki.stbcxb.2020.01.042
    [14] 李霞, 朱万泽, 舒树淼, 等. 基于主成分分析的大渡河中游干暖河谷草地土壤质量评价 [J]. 生态学报, 2021, 41(10):3891−3900.

    LI X, ZHU W Z, SHU S M, et al. Soil quality assessment of grassland in dry and warm valley of Dadu River based on principal component analysis [J]. Acta Ecologica Sinica, 2021, 41(10): 3891−3900.(in Chinese)
    [15] ZHU Y, GUO B, LIU C, et al. Soil fertility, enzyme activity, and microbial community structure diversity among different soil textures under different land use types in coastal saline soil [J]. Journal of Soils and Sediments, 2021, 21(6): 2240−2252. doi: 10.1007/s11368-021-02916-z
    [16] 陈欢, 曹承富, 张存岭, 等. 基于主成分-聚类分析评价长期施肥对砂姜黑土肥力的影响 [J]. 土壤学报, 2014, 51(3):609−617. doi: 10.11766/trxb201308190376

    CHEN H, CAO C F, ZHANG C L, et al. Principal component-cluster analysis of effects of long-term fertilization on fertility of lime concretion black soil [J]. Acta Pedologica Sinica, 2014, 51(3): 609−617.(in Chinese) doi: 10.11766/trxb201308190376
    [17] TOPA D, CARA I G, JITĂREANU G. Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis [J]. CATENA, 2021, 199: 105102. doi: 10.1016/j.catena.2020.105102
    [18] 杨玮, 兰红, 李民赞, 等. 基于图像处理和SVR的土壤容重与土壤孔隙度预测 [J]. 农业工程学报, 2021, 37(12):144−151. doi: 10.11975/j.issn.1002-6819.2021.12.017

    YANG W, LAN H, LI M Z, et al. Predicting bulk density and porosity of soil using image processing and support vector regression [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 144−151.(in Chinese) doi: 10.11975/j.issn.1002-6819.2021.12.017
    [19] 靳海洋, 谢迎新, 李梦达, 等. 连续周年耕作对砂姜黑土农田蓄水保墒及作物产量的影响 [J]. 中国农业科学, 2016, 49(16):3239−3250. doi: 10.3864/j.issn.0578-1752.2016.16.017

    JIN H Y, XIE Y X, LI M D, et al. Effects of annual continuous tillage on soil water conservation and crop yield in lime concretion black soil farmland [J]. Scientia Agricultura Sinica, 2016, 49(16): 3239−3250.(in Chinese) doi: 10.3864/j.issn.0578-1752.2016.16.017
    [20] SCHOENHOLTZ S H, VAN MIEGROET H, BURGER J A. A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities [J]. Forest Ecology and Management, 2000, 138(1/2/3): 335−356.
    [21] 吴海梅, 周彦莉, 郑浩飞, 等. 秸秆带状覆盖对土壤有机碳及其活性组分的影响 [J]. 干旱地区农业研究, 2022, 40(1):61−69.

    WU H M, ZHOU Y L, ZHENG H F, et al. Effects of straw strip mulching on soil organiccarbon and active carbon fractions [J]. Agricultural Research in the Arid Areas, 2022, 40(1): 61−69.(in Chinese)
    [22] 息伟峰, 徐新朋, 赵士诚, 等. 长期施肥下三种旱作土壤有机碳含量及其矿化势比较研究 [J]. 植物营养与肥料学报, 2021, 27(12):2094−2104. doi: 10.11674/zwyf.2021261

    XI W F, XU X P, ZHAO S C, et al. Comparison of organic carbon content and its mineralization potential in three dryland soils under long-term fertilization [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2094−2104.(in Chinese) doi: 10.11674/zwyf.2021261
    [23] KELIL GOBELLE S. Impacts of bush management on herbaceous plant diversity and biomass and, soil organic carbon and nitrogen in borana rangelands, southern Ethiopia [J]. Journal of Plant Sciences, 2021, 9(2): 38. doi: 10.11648/j.jps.20210902.12
    [24] YANAGI Y, SHINDO H. Assessment of long-term compost application on physical, chemical, and biological properties, as well as fertility, of soil in a field subjected to double cropping [J]. Agricultural Sciences, 2016, 7(1): 30−43. doi: 10.4236/as.2016.71004
    [25] LYNN T M, ZHRAN M, WANG L F, et al. Effect of land use on soil properties, microbial abundance and diversity of four different crop lands in central Myanmar [J]. 3 Biotech, 2021, 11(4): 154. doi: 10.1007/s13205-021-02705-y
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  359
  • HTML全文浏览量:  173
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 录用日期:  2022-04-25
  • 修回日期:  2022-07-28
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回