• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆叶决明降解对土壤细菌组成和结构动态变化的影响

钟珍梅 邢世和 翁伯琦 游小凤

钟珍梅,邢世和,翁伯琦,等. 圆叶决明降解对土壤细菌组成和结构动态变化的影响 [J]. 福建农业学报,2023,38(2):229−237 doi: 10.19303/j.issn.1008-0384.2023.02.013
引用本文: 钟珍梅,邢世和,翁伯琦,等. 圆叶决明降解对土壤细菌组成和结构动态变化的影响 [J]. 福建农业学报,2023,38(2):229−237 doi: 10.19303/j.issn.1008-0384.2023.02.013
ZHONG Z M, XIN S H, WENG B Q, et al. Effect of Composting Chamaecrista rotundifolia on Microbial Community in Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(2):229−237 doi: 10.19303/j.issn.1008-0384.2023.02.013
Citation: ZHONG Z M, XIN S H, WENG B Q, et al. Effect of Composting Chamaecrista rotundifolia on Microbial Community in Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(2):229−237 doi: 10.19303/j.issn.1008-0384.2023.02.013

圆叶决明降解对土壤细菌组成和结构动态变化的影响

doi: 10.19303/j.issn.1008-0384.2023.02.013
基金项目: 福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021010)
详细信息
    作者简介:

    钟珍梅(1975−),女,博士,副研究员,主要从事农业资源与环境研究(E-mail:mume19@126.com)

    通讯作者:

    邢世和(1962−),男,博士,教授,博士生导师,主要从事土壤生态环境研究(E-mail:fafuxsh@126.com

    翁伯琦(1957−),男,博士,研究员,主要从事农业生态和水土保持研究(E-mail:wengboqi@163.com

  • 中图分类号: S153

Effect of Composting Chamaecrista rotundifolia on Microbial Community in Soil

  • 摘要:   目的  探明豆科绿肥圆叶决明翻压对果园红壤细菌群落的影响规律。  方法  以空白对照(CK)和添加狼尾草(P处理)为对照,采用模拟培养试验,研究添加圆叶决明(J处理)后培养10~180 d果园红壤细菌群落数量、组成、多样性及结构的动态变化。  结果  25 ℃恒温恒湿培养,门、纲、目、科和属水平细菌种群数量的变化主要发生在培养10~60 d,80~140 d处理间相对丰度具有显著差异的细菌数量减少,至培养180 d,3种处理所有细菌的相对丰度无显著差异。变形菌、酸杆菌和放线菌为3种处理相对丰度占比位于前3的优势细菌。与CK相比,P处理和J处理变形菌相对丰度随培养时间延长逐渐降低,而酸杆菌门相对丰度则先升后降,J处理放线菌门相对丰度随着培养时间延长而升高,P处理和J处理的变形菌、放线菌、绿弯菌、厚壁菌、拟杆菌和疣微菌随时间的变化均可用三次或二次函数拟合。P处理和J处理提高了红壤细菌ACE、Chao1和Shannon指数,降低了Simpson指数。  结论  添加圆叶决明改变果园红壤细菌群落组成和结构,提高了果园红壤细菌群落的丰度和多样性,但添加圆叶决明和添加杂交狼尾草之间细菌群落结构差异不大。
  • 图  1  不同处理门水平细菌的相对丰度

    由于培养100 d具有显著性差异的细菌数量减少,到180 d不存在具有显著性差异的细菌,因此数据只取至培养140 d,即取8次取样的数据,下同。

    Figure  1.  Bacterial relative abundance at phylum level by treatments

    Since bacteria count after 100 d of incubation showed significant decreases and not on 180 d, only data up to 140 d are presented,that is, data from eight samples are listed。 Same for below.

    图  2  各样品的主成分分析

    样品的相关性越强,其距离越近,指标相关性越强,夹角越小。

    Figure  2.  Principal component analysis on samples

    Stronger the correlation between samples indicates closer relationship; and stronger the correlation between indices, smaller angles.

    表  1  不同处理间相对丰度具有统计学差异的果园红壤细菌种群数量

    Table  1.   Bacterial population with statistically different relative abundance in red orchard soil by treatments

    分类水平Classification level编号No.比对组Comparison group不同处理时间细菌种群数Bacterial population at different treatment times/种
    10 d20 d30 d40 d60 d80 d100 d140 d180 d平均Average
    门 Phylum CK VS J 11 13 12 5 14 0 1 0 0 6.22
    CK VS P 14 11 8 7 14 0 0 1 0 6.11
    P VS J 4 2 4 2 6 0 1 1 0 2.22
    纲 Class CK VS J 39 32 26 20 42 7 1 3 0 18.89
    CK VS P 37 33 27 22 48 9 0 5 0 20.11
    P VS J 11 4 7 2 14 4 1 3 0 5.11
    目 Order CK VS J 54 40 37 21 47 9 2 5 0 23.89
    CK VS P 49 42 40 24 46 10 1 8 0 24.44
    P VS J 19 9 10 2 14 6 1 5 0 7.33
    科 Family CK VS J 94 74 68 48 72 23 2 6 0 43.00
    CK VS P 81 69 66 54 74 27 1 7 0 42.11
    P VS J 31 17 20 10 23 12 1 7 0 13.44
    属 Genus CK VS J 92 67 63 35 72 12 2 6 0 38.78
    CK VS P 79 59 64 38 72 13 2 7 0 37.11
    P VS J 36 16 19 8 21 8 0 7 0 12.78
    CK为对照;P为添加杂交狼尾草处理;J为添加圆叶决明处理。10、20、30、40、60、80 、100、140和180 d为土壤培养天数。CK: blank control; P: treatment with P. americanum×P. purpureum; J: treatment with C. rotundifolia. 10, 20, 30, 40, 60, 80, 100, 140, and 180d: number of incubation days.
    下载: 导出CSV

    表  2  门水平不同处理细菌相对丰度随时间变化的回归方程

    Table  2.   Regression equations on bacterial relative abundance at phylum level by treatments

    处理Treatment细菌门Bacterial phylumR2FP方程式Equation
    CK疣微菌 Verrucomicrobia0.70211.980.013y=−0.599x+6.678
    浮霉菌 Planctomycetes0.85315.880.007y=0.010x3−0.061x2−0.176x+2.125
    J变形菌 Proteobacteria0.97319.740.007y=−0.327x3+3.954x2−14.467x+63.172
    放线菌 Actinobacteria0.85714.310.009y=0.474x2−2.669x+8.984
    绿弯菌 Chloroflexi0.90811.750.013y=0.104x3−1.196x2+4.331x+0.846
    厚壁菌 Firmicutes0.97953.140.000y=0.096x3−0.925x2+2.585x−1.025
    拟杆菌 Bacteroidetes0.84914.960.008y=−1.093x+9.938
    疣微菌 Verrucomicrobia0.91456.660.000y=−0.069x2+0.129x+4.559
    浮霉菌 Planctomycetes0.7619.680.021y=0.030x2−0.378x+ 2.758
    P变形菌 Proteobacteria0.91013.460.015y=−3×10−5x3+0.0073x2−0.456x+53.82
    放线菌 Actinobacteria0.8037.680.030y=0.617x2−5.00x+15.64
    绿弯菌 Chloroflexi0.87511.0560.021y=0.090x3−1.138x2+4.319x+2.161
    芽单胞菌Gemmatimonadetes0.8356.770.048y=0.059x3−0.695x2+2.116x+2.527
    厚壁菌 Firmicutes0.84310.890.015y=0.170x2−1.169x+2.832
    拟杆菌 Bacteroidetes0.88416.530.006y=−0.174x2+0.561x+6.842
    疣微菌 Verrucomicrobia0.85611.250.020y=0.035x3−0.571x2+2.365x+1.678
    下载: 导出CSV

    表  3  不同处理土壤细菌多样性指数

    Table  3.   Soil bacterial diversity index under treatments

    指标Index处理Treatment培养时间 Incubation time/d
    10 20 30 40 60 80 100 140
    ACECK1 689.00±13.50 b1 480±3.61 b1 629.00±16.50 b1 615.33±45.83 b1 266.33±40.99 b1 870.33±270.09 b1 762.00±308.58 a1 728.33±48.42 a
    P1 800.67±6.89 a1 624.67±5.70 a1 821.33±7.26 a1 800.67±5.49 a1 762.00±11.02 a2 584.00±23.12 a1 944.33±36.35 a1 886.67±44.18 a
    J1 776.33±11.92 a1 626.67±6.12 a1 818.00±3.06 a1 785.33±5.84 a1 748.33±11.62 a2 504.33±57.17 a1 865.67±86.34 a1 854.67±69.53 a
    Chao1CK1 714.67±16.37 b1 511.33±8.09 b1 650.00±10.26 b1 650.33±39.18 b1 295.00±58.00 b1 903.67±273.09 b1 764.33±316.83 a1 743.00±52.08 a
    P1 806.00±7.00 a1 638.67±6.84 a1 833.67±10.40 a1 824.33±1.86 a1 787.67±16.02 a2 579.00±33.23 a1 944.33±48.21 a1 929.33±66.20 a
    J1 793.00±18.77 a1 639.00±13.50 a1 829.67±6.89 a1 799.33±8.82 a1 775.67±14.33 a2 511.67±71.66 a1 879.00±85.51 a1 858.33±67.17 a
    SimpsonCK0.010±0.001 a0.015±0.002 a0.014±0.002 a0.013±0.003 a0.018±0.004 a0.013±0.002 a0.025±0.006 a0.015±0.001 a
    P0.006±0.000 b0.007±0.001 b0.006±0.000 b0.005±0.000 b0.005±0.000 b0.007±0.000 b0.020±0.003 a0.014±0.001 a
    J0.007±0.000 b0.006±0.000 b0.007±0.000 b0.008±0.001 b0.007±0.000 b0.011±0.001 ab0.016±0.001 a0.015±0.003 a
    ShannonCK6.14±0.03 a5.90±0.07 b5.92±0.10 b5.82±0.19 a5.19±0.17 b5.69±0.30 a5.25±0.39 a5.30±0.06 a
    P6.15±0.02 a6.12±0.04 a6.25±0.02 a6.22±0.03 a6.25±0.00 a6.11±0.01 a5.32±0.08 a5.42±0.01 a
    J6.04±0.05 a6.14±0.03 a6.16±0.03 a6.10±0.10 a6.18±0.02 a5.98±0.03 a5.35±0.04 a5.33±0.014 a
    下载: 导出CSV

    表  4  不同处理细菌多样性随时间变化的回归方程

    Table  4.   Regression equations on bacterial diversity of treatments

    处理Treatment指标IndexR2FP方程式Equation
    JACE 0.3994.4200.015y=2184.10−557.18x3+171.77x2−13.49x
    Chao10.4094.6100.013y=2206.64−566.82x3+174.80x2−13.75x
    Simpson0.67922.2000.00y=0.007−0.001x2+0.0001x
    Shannon0.81947.5400.00y=5.81+0.249x2−0.04x
    P ACE0.4685.8800.005y=2294.81−667.47x3+202.20x2−15.71x
    Chao10.4615.7000.005y=2253.50−612.06x3+187.45x2−14.58x
    Simpson0.55613.1700.000y=0.009−0.002x2+0.0001x
    Shannon0.79841.5800.000y=5.89+0.234x2−0.041x
    x为培养时间,y为细菌群落Alpha多样性指数。P为显著性,<0.05表示差异显著。x: incubation time; y: alpha diversity index of bacterial community. P: difference at 5% level.
    下载: 导出CSV
  • [1] 林先贵, 陈瑞蕊, 胡君利. 土壤微生物资源管理、应用技术与学科展望 [J]. 生态学报, 2010, 30(24):7029−7037.

    LIN X G, CHEN R R, HU J L. The management and application of soil microbial resources and the perspectives of soil microbiology [J]. Acta Ecologica Sinica, 2010, 30(24): 7029−7037.(in Chinese)
    [2] 唐婧, 徐小蓉, 商传禹, 等. 南明河城区河段细菌多样性与环境因子的关系 [J]. 微生物学报, 2015, 55(8):1050−1059. doi: 10.13343/j.cnki.wsxb.20140568

    TANG J, XU X R, SHANG C Y, et al. Association of bacterial diversity in city area of Nanming River with environmental factors [J]. Acta Microbiologica Sinica, 2015, 55(8): 1050−1059.(in Chinese) doi: 10.13343/j.cnki.wsxb.20140568
    [3] FINN D, KOPITTKE P M, DENNIS P G, et al. Microbial energy and matter transformation in agricultural soils [J]. Soil Biology and Biochemistry, 2017, 111: 176−192. doi: 10.1016/j.soilbio.2017.04.010
    [4] LUXHØI J, BRUUN S, STENBERG B, et al. Prediction of gross and net nitrogen mineralization-immobilization-turnover from respiration [J]. Soil Science Society of America Journal, 2006, 70(4): 1121−1128. doi: 10.2136/sssaj2005.0133
    [5] TORABIAN S, FARHANGI-ABRIZ S, DENTON M D. Do tillage systems influence nitrogen fixation in legumes? A review [J]. Soil and Tillage Research, 2019, 185: 113−121. doi: 10.1016/j.still.2018.09.006
    [6] 曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望 [J]. 植物营养与肥料学报, 2017, 23(6):1450−1461. doi: 10.11674/zwyf.17291

    CAO W D, BAO X G, XU C X, et al. Reviews and prospects on science and technology of green manure in China [J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1450−1461.(in Chinese) doi: 10.11674/zwyf.17291
    [7] GEISSELER D, HORWATH W R, DOANE T A. DANIEL G, WILLIAM R H, TIMOTHY A D. Significance of organic nitrogen uptake from plant residues by soil microorganisms as affected by carbon and nitrogen availability [J]. Soil Biology and Biochemistry, 2009, 41(6): 1281−1288. doi: 10.1016/j.soilbio.2009.03.014
    [8] DUCHENE O, VIAN J F, CELETTE F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review [J]. Agriculture, Ecosystems & Environment, 2017, 240: 148−161.
    [9] DIACONOM, PERSIANI AL, CANALI S, et al. Agronomic performance and sustainability indicators in organic tomato combining different agro-ecological practices [J]. Nutrient Cycling in Agroecosystems, 2018, 112(1): 101−117. doi: 10.1007/s10705-018-9933-7
    [10] ELFSTRAND S, HEDLUND K, MåRTENSSON A. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring [J]. Applied Soil Ecology, 2007, 35(3): 610−621. doi: 10.1016/j.apsoil.2006.09.011
    [11] PAUL E A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization [J]. Soil Biology and Biochemistry, 2016, 98: 109−126. doi: 10.1016/j.soilbio.2016.04.001
    [12] 刘国顺, 李正, 敬海霞, 等. 连年翻压绿肥对植烟土壤微生物量及酶活性的影响 [J]. 植物营养与肥料学报, 2010, 16(6):1472−1478. doi: 10.11674/zwyf.2010.0624

    LIU G S, LI Z, JING H X, et al. Effects of consecutive turnover of green manures on soil microbial biomass and enzyme activity [J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1472−1478.(in Chinese) doi: 10.11674/zwyf.2010.0624
    [13] 张黎明, 邓小华, 周米良, 等. 不同种类绿肥翻压还田对植烟土壤微生物量及酶活性的影响 [J]. 中国烟草科学, 2016, 37(4):13−18.

    ZHANG L M, DENG X H, ZHOU M L, et al. Effects of different green manures on microbial biomass and enzyme activities of tobacco-planting soil [J]. Chinese Tobacco Science, 2016, 37(4): 13−18.(in Chinese)
    [14] 佀国涵, 赵书军, 王瑞, 等. 连年翻压绿肥对植烟土壤物理及生物性状的影响 [J]. 植物营养与肥料学报, 2014, 20(4):905−912.

    SI G H, ZHAO S J, WANG R, et al. Effects of consecutive overturning of green manure on soil physical and biological characteristics in tobacco-planting fields [J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 905−912.(in Chinese)
    [15] 陈晓波, 官会林, 郭云周, 等. 绿肥翻压对烟地红壤微生物及土壤养分的影响 [J]. 中国土壤与肥料, 2011(4):74−78. doi: 10.3969/j.issn.1673-6257.2011.04.017

    CHEN X B, GUAN H L, GUO Y Z, et al. The effect of plowing under green manure on the soil microorganism and fertility in tobacco cultivation red soil [J]. Soil and Fertilizer Sciences in China, 2011(4): 74−78.(in Chinese) doi: 10.3969/j.issn.1673-6257.2011.04.017
    [16] 白小军, 冯海萍, 张丽娟, 等. 种植及翻压绿肥对设施土壤养分及微生物区系的影响 [J]. 北方园艺, 2014(23):144−147.

    BAI X J, FENG H P, ZHANG L J, et al. Effect of the planting and green manure application on soil nutrients and microbial flora in greenhouse [J]. Northern Horticulture, 2014(23): 144−147.(in Chinese)
    [17] ZHENG J S, HU J M, WEI X H, et al. Effects of green manure returning on soil microbial biomass carbon and mineralization of organic carbon in smash ridging paddy field [J]. Chinese Journal of Eco-Agriculture, 2021, 29(4): 691−703.
    [18] 蒋宇航, 林生, 林伟伟, 等. 不同肥料对退化茶园根际土壤微生物代谢活性和群落结构的影响 [J]. 生态学杂志, 2017, 36(10):2894−2902. doi: 10.13292/j.1000-4890.201710.034

    JIANG Y H, LIN S, LIN W W, et al. Effects of different fertilizer applications on microbial metabolic activity and community structure in tea rhizosphere soil [J]. Chinese Journal of Ecology, 2017, 36(10): 2894−2902.(in Chinese) doi: 10.13292/j.1000-4890.201710.034
    [19] 应朝阳, 罗旭辉, 黄毅斌, 等. 闽引圆叶决明适应性研究 [J]. 草地学报, 2010, 18(1):137−140.

    YING Z Y, LUO X H, HUANG Y B, et al. Study on adaptability of Chamaecrista rotundifolia Greene. cv. Minyin [J]. Acta Agrestia Sinica, 2010, 18(1): 137−140.(in Chinese)
    [20] 罗旭辉, 詹杰, 王义祥, 等. 侵蚀果园长期植草的生态效益分析 [J]. 草地学报, 2011, 19(5):729−734.

    LUO X H, ZHAN J, WANG Y X, et al. Soil & water conservation function and comprehensive benefits of intercropping forage in eroded fruit garden [J]. Acta Agrestia Sinica, 2011, 19(5): 729−734.(in Chinese)
    [21] ZHONG Z M, HUANG X S, FENG D Q, et al. Long-term effects of legume mulching on soil chemical properties and bacterial community composition and structure [J]. Agriculture, Ecosystems & Environment, 2018, 268: 24−33.
    [22] 钟珍梅, 杨庆, 游小凤, 等. 圆叶决明添加量对红壤可溶性氮及酶活性的影响 [J]. 草地学报, 2022, 30(3):622−630.

    ZHONG Z M, YANG Q, YOU X F, et al. Effects of Additions of Chamaecrista rotundifolia on the Soluble Nitrogen and Enzyme Activity of red soil [J]. Acta Agrestia Sinica, 2022, 30(3): 622−630.(in Chinese)
    [23] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data [J]. Nature Methods, 2010, 7(5): 335−336. doi: 10.1038/nmeth.f.303
    [24] EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection [J]. Bioinformatics, 2011, 27(16): 2194−2200. doi: 10.1093/bioinformatics/btr381
    [25] QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools [J]. Nucleic Acids Research, 2013, 41(D1): D590−D596.
    [26] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology, 2009, 75(23): 7537−7541. doi: 10.1128/AEM.01541-09
    [27] FIERER N. Embracing the unknown: Disentangling the complexities of the soil microbiome [J]. Nature Reviews Microbiology, 2017, 15(10): 579−590. doi: 10.1038/nrmicro.2017.87
    [28] 万水霞, 唐杉, 蒋光月, 等. 紫云英与化肥配施对土壤微生物特征和作物产量的影响 [J]. 草业学报, 2016, 25(6):109−117. doi: 10.11686/cyxb2016030

    WAN S X, TANG S, JIANG G Y, et al. Effects of Chinese milk vetch manure and fertilizer on soil microbial characteristics and yield of rice [J]. Acta Prataculturae Sinica, 2016, 25(6): 109−117.(in Chinese) doi: 10.11686/cyxb2016030
    [29] 林新坚, 林斯, 邱珊莲, 等. 不同培肥模式对茶园土壤微生物活性和群落结构的影响 [J]. 植物营养与肥料学报, 2013, 19(1):93−101.

    LIN X J, LIN S, QIU S L, et al. Effect of different fertilization strategies on structure and activity of microbial community in tea orchard soils [J]. Plant Nutrition and Fertilizer Science, 2013, 19(1): 93−101.(in Chinese)
    [30] SIX J, CARPENTIER A, VAN KESSEL C, et al. Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality [J]. Plant and Soil, 2001, 234(1): 27−36. doi: 10.1023/A:1010504611456
    [31] TAO J M, LIU X D, LIANG Y L, et al. Maize growth responses to soil microbes and soil properties after fertilization with different green manures [J]. Applied Microbiology and Biotechnology, 2017, 101(3): 1289−1299. doi: 10.1007/s00253-016-7938-1
    [32] NANNIPIERI P, ASCHER J, CECCHERINI M T, et al. Microbial diversity and soil functions [J]. European Journal of Soil Science, 2003, 54(4): 655−670. doi: 10.1046/j.1351-0754.2003.0556.x
    [33] CUI H, ZHOU Y, GU Z, et al. The combined effects of cover crops and symbiotic microbes on phosphatase gene and organic phosphorus hydrolysis in subtropical orchard soils [J]. Soil Biology and Biochemistry, 2015, 82: 119−126. doi: 10.1016/j.soilbio.2015.01.003
    [34] SUL W, ASUMING-BREMPONG S, WANG Q, et al. Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon [J]. Soil Biology and Biochemistry, 2013, 65: 33−38. doi: 10.1016/j.soilbio.2013.05.007
    [35] CABAN J R, KUPPUSAMY S, KIM J H, et al. Green manure amendment enhances microbial activity and diversity in antibiotic-contaminated soil [J]. Applied Soil Ecology, 2018, 129: 72−76. doi: 10.1016/j.apsoil.2018.04.013
    [36] 林叶春, 李雨, 陈伟, 等. 绿肥压青对喀斯特地区植烟土壤细菌群落特征的影响 [J]. 中国土壤与肥料, 2018(3):161−167. doi: 10.11838/sfsc.20180325

    LIN Y C, LI Y, CHEN W, et al. Effects of green manures on the bacterial community characteristics of the rhizosphere soil in flue-cured tobacco [J]. Soil and Fertilizer Sciences in China, 2018(3): 161−167.(in Chinese) doi: 10.11838/sfsc.20180325
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  198
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-11
  • 录用日期:  2022-11-11
  • 修回日期:  2023-01-30
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回