• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斑点叉尾鮰EGFL9基因变异位点与生长性状的关联分析

张文平 张世勇 刘洪岩 徐思琪 王明华 钟立强 边文冀 朱明 陈校辉

张文平,张世勇,刘洪岩,等. 斑点叉尾鮰EGFL9基因变异位点与生长性状的关联分析 [J]. 福建农业学报,2023,38(3):253−261 doi: 10.19303/j.issn.1008-0384.2023.03.001
引用本文: 张文平,张世勇,刘洪岩,等. 斑点叉尾鮰EGFL9基因变异位点与生长性状的关联分析 [J]. 福建农业学报,2023,38(3):253−261 doi: 10.19303/j.issn.1008-0384.2023.03.001
ZHANG W P, ZHANG S Y, LIU H Y, et al. Variation Sites on EGFL9 Associated with Growth of Channel Catfish [J]. Fujian Journal of Agricultural Sciences,2023,38(3):253−261 doi: 10.19303/j.issn.1008-0384.2023.03.001
Citation: ZHANG W P, ZHANG S Y, LIU H Y, et al. Variation Sites on EGFL9 Associated with Growth of Channel Catfish [J]. Fujian Journal of Agricultural Sciences,2023,38(3):253−261 doi: 10.19303/j.issn.1008-0384.2023.03.001

斑点叉尾鮰EGFL9基因变异位点与生长性状的关联分析

doi: 10.19303/j.issn.1008-0384.2023.03.001
基金项目: 江苏省农业重大新品种创制项目(PZCZ201741);国家现代农业产业技术体系建设专项(CARS-46);江苏省现代农业产业技术体系建设项目[JATS(2022)413]
详细信息
    作者简介:

    张文平(1996−),男,硕士研究生,主要从事鱼类遗传育种研究(E-mail:976261968@qq.com

    通讯作者:

    张世勇(1987−),男,博士,副研究员,主要从事鱼类遗传育种研究(E-mail:shiyongzhang@hotmail.com

    陈校辉(1977−),男,硕士,研究员,主要从事鱼类遗传育种研究(E-mail: cxiaohui416@hotmail.com

  • 中图分类号: S965

Variation Sites on EGFL9 Associated with Growth of Channel Catfish

  • 摘要:   目的  研究斑点叉尾鮰表皮生长因子样结构域蛋白EGFL9(Multiple epidermal growth factor-like domains protein 9)基因与其生长性状的相关性,为斑点叉尾鮰的分子标记辅助育种奠定基础。  方法  采用靶向基因测序技术对EGFL9基因进行测序,与参考基因组比对后筛选变异位点,并将获得的变异位点与生长性状进行关联分析。  结果  在EGFL9上共发现27个多态位点,经过滤,获得22个有效突变位点,其中4个变异位点(g.142、g.573、g.3079、g.7409)对斑点叉尾鮰的生长性状具有显著影响,位点g.142、g.3079、g.7409位于内含子中,位点g.573位于第2外显子上;g.142位点的A/A型个体的平均体长显著高于A/G型个体(P<0.05);g.7409位点A/G型个体的平均体长显著高于G/G型、A/A型个体(P<0.05);g.3079位点C/C型个体的平均体质量和体长均显著高于A/A型个体(P<0.05);位于外显子上的InDel位点g.573使EGFL9基因编码蛋白减少了一个苏氨酸残基,对蛋白质三级结构产生较为明显的影响,该位点TACC/T型个体的平均体质量显著高于TACC/TACC型个体(P<0.05),平均体长显著高于TACC/TACC型与T/T型个体(P<0.05)。  结论  获得的4个斑点叉尾鮰生长相关标记(g.142、g.573、g.3079、g.7409)与其生长性状显著关联,可以应用于后续斑点叉尾鮰育种芯片开发和分子标记辅助育种。
  • 图  1  斑点叉尾鮰EGFL9二级结构预测

    A:EGFL9蛋白质二级结构;B:EGFL9(g.573)蛋白质二级结构。在二级结构中蓝色表示螺旋;红色表示折叠;黄色表示未知结构,在表面残基可溶性中蓝色表示暴露;黄色表示埋藏。

    Figure  1.  Predicted secondary structure of EGFL9 protein in channel catfish

    A: secondary structure of EGFL9 protein; B: secondary structure of EGFL9 (g.573) protein. In secondary structure, blue indicates helix; red, strand; yellow, others. On solvent accessibility, blue indicates exposed; yellow, buried.

    图  2  斑点叉尾鮰EGFL9三级结构预测

    A:EGFL9蛋白质三级结构;B:EGFL9(g.573)蛋白质三级结构。

    Figure  2.  Predicted tertiary structure of EGFL9 protein in channel catfish

    A: tertiary structure of EGFL9 protein; B: tertiary structure of EGFL9 (g.573) protein.

    表  1  用于EGFL9基因变异位点筛选和分型引物

    Table  1.   Primers used in screening and genotyping variation sites on EGFL9

    位点  
    Locus  
    变异位点位置
    Variation location
    引物序列   
    Primer sequence   
    变异类型  
    Variation type  
    产物大小
    PCR size/bp
    g.137 Intron1 F: GGGGAGCGTTTGTAGTAGACG A/T 193
    R: GTTTCAGTTACTCTTGCTCGCG
    g.142 Intron2 F: GGGGAGCGTTTGTAGTAGACG A/G 193
    R: GTTTCAGTTACTCTTGCTCGCG
    g.339 Exon1 F: TGCATGCAGAATGTTAGTTTTTC A/G 192
    R: GTTTCAGTTACTCTTGCTCGCG
    g.573 Exon2 F: CTGACCTCAGCGCAATTTC TACC/T 195
    R: AACAACAACAACCACCATCACC
    g.716 Intron3 F: GATTTTACCACCACCACCAC C/T 187
    R: TGACAGGTCTATTACTCTTGTACACTTC
    g.913 Intron4 F: CCGCCTGACCTCAAAACCC A/G 191
    R: TCCTATGTATTGAGAACCTCAAGTC
    g.928 Intron5 F: CCGCCTGACCTCAAAACCC A/C 191
    R: TCCTATGTATTGAGAACCTCAAGTC
    g.1877 Intron6 F: CTGTAAGTGTTTGCCCGG C/T 199
    R: CACCTTACAAAGCAGTCGCC
    g.2998 Intron7 F: TAACTGGGTGTGAAATTTCAAC A/AGGATGAT 194
    R: AAAGCAGAATGTTGCGGGAC
    g.3027 Intron8 F: TAACTGGGTGTGAAATTTCAAC G/T 194
    R: AAAGCAGAATGTTGCGGGAC
    g.3029 Intron9 F: TAACTGGGTGTGAAATTTCAAC G/T 194
    R: AAAGCAGAATGTTGCGGGAC
    g.3031 Intron10 F: TAACTGGGTGTGAAATTTCAAC G/T 194
    R: AAAGCAGAATGTTGCGGGAC
    g.3045 Intron11 F: TAACTGGGTGTGAAATTTCAAC A/G 194
    R: AAAGCAGAATGTTGCGGGAC
    g.3079 Intron12 F: TAACTGGGTGTGAAATTTCAAC A/C 194
    R: AAAGCAGAATGTTGCGGGAC
    g.5185 Intron13 F: TGCCATGCGAATGCAATG A/G 203
    R: GCAAGGCCTTCTGAATGCC
    g.5819 Intron14 F: GTGTGTGCCAATCAAACTGGG A/C 192
    R: GCAAGGCCTTCTGAATGCC
    g.6171 Intron15 F: TAACAAAATGCCAAGCTTAAAATG C/T 197
    R: AGCCCCACTGCCAACG
    g.6202 Intron16 F: TAACAAAATGCCAAGCTTAAAATG C/CAT 197
    R: AGCCCCACTGCCAACG
    g.6305 Exon3 F: TAACAAAATGCCAAGCTTAAAATG C/G 197
    R: AGCCCCACTGCCAACG
    g.6477 Exon4 F: CGCTCCTCTCCGGCCTG C/T 199
    R: CAACAGCTATCACGACAGCCTG
    g.7409 Intron17 F: CAGACATGCACTGATGCTTTAG A/G 193
    R: TGGAATAGAAACACATGCAGTTAC
    g.7669 Intron18 F: GGGGCGCTGCCTTATGG A/G 196
    R: AATCGAATTAGTTTTGAATCAGTCC
    下载: 导出CSV

    表  2  斑点叉尾鮰EGFL9基因变异位点遗传多样性参数

    Table  2.   Diversity indices of variation sites on EGFL9 of channel catfish

    位点
    Locus
    变异位点位置    
    Variation location    
    有效等位基因数
    Ne
    期望杂合度
    He
    观测杂合度
    Ho
    多态性信息容量
    PIC
    哈迪-温伯格平衡
    HWE
    g.137 A:0.815 1.4294 0.301 0.358 0.255 NS
    T:0.184
    g.142 A:0.616 1.8963 0.474 0.637 0.361 ***
    G:0.383
    g.339 A:0.077 1.1677 0.144 0.156 0.133 ***
    G:0.922
    g.573 T:0.261 1.6285 0.387 0.204 0.311 ***
    TACC:0.738
    g.716 C:0.86 1.3154 0.240 0.179 0.211 ***
    T:0.139
    g.913 A:0.567 1.9646 0.492 0.527 0.370 NS
    G:0.432
    g.928 A:0.159 1.3656 0.268 0.259 0.232 NS
    C:0.84
    g.1877 C:0.606 1.9136 0.479 0.269 0.363 ***
    T:0.393
    g.2998 A:0.38 1.8914 0.473 0.365 0.360 NS
    AGGATGAT:0.619
    g.3027 G:0.38 1.8914 0.473 0.365 0.360 NS
    T:0.619
    g.3029 G:0.377 1.8869 0.471 0.370 0.360 NS
    T:0.622
    g.3031 G:0.38 1.8914 0.473 0.365 0.360 NS
    T:0.619
    g.3045 A:0.768 1.5526 0.357 0.326 0.293 NS
    G:0.231
    g.3079 A:0.315 1.7607 0.433 0.581 0.339 ***
    C:0.684
    g.5185 A:0.915 1.1832 0.155 0.169 0.143 ***
    G:0.084
    g.5819 A:0.484 1.9982 0.501 0.556 0.375 NS
    C:0.515
    g.6171 C:0.636 1.8607 0.464 0.468 0.356 NS
    T:0.363
    g.6202 C:0.378 1.8878 0.471 0.249 0.360 ***
    CAT:0.621
    g.6305 C:0.803 1.4616 0.317 0.353 0.266 NS
    G:0.196
    g.6477 C:0.937 1.1327 0.117 0.105 0.110 ***
    T:0.062
    g.7409 A:0.44 1.9716 0.494 0.470 0.371 NS
    G:0.56
    g.7669 A:0.206 1.4862 0.328 0.342 0.274 NS
    G:0.793
    哈迪温伯格平衡检验,NS代表不显著,***代表极显著偏离。
    Hardy-Weinberg equilibrium, NS: not significant; ***: significant at 0.001 level.
    下载: 导出CSV

    表  3  斑点叉尾鮰EGFL9基因变异位点与生长性状的关联分析

    Table  3.   Correlation between variation sits on EGFL9 and growth traits of channel catfish

    位点
    Locus
    基因型    
    Genotype    
    频率
    Frequency
    体质量
    Body mass/g
    体长
    Body length/cm
    g.142 A/A(60) 0.298 955.165±273.451 a 46.200±3.602 a
    A/G(128) 0.636 944.849±284.504 a 45.055±3.756 b
    G/G(13) 0.064 988.585±189.377 a 46.154±2.882 ab
    g.573 TACC/TACC(128) 0.636 921.955±281.729 b 45.211±3.588 b
    TACC/T(41) 0.203 1025.578±261.659 a 46.524±3.521 a
    T/T(32) 0.159 970.100±252.701 ab 45.145±4.141 b
    g.3079 A/A(5) 0.025 722.880±285.012 b 42.200±4.086 b
    A/C(115) 0.580 939.037±267.002 ab 45.300±3.655 ab
    C/C(78) 0.393 983.433±283.021 a 45.799±3.636 a
    g.7409 A/A(41) 0.205 955.485±328.208 a 45.456±4.376 b
    A/G(94) 0.470 985.556±268.803 a 46.034±3.518 a
    G/G(65) 0.325 904.335±239.218 a 44.755±3.319 b
    同列数据后不同小写字母表示同一位点不同基因型之间差异显著(P<0.05)。
    Datas with different lowercase letters on the same column indicate significant difference of different genotypes of one same SNP site at P<0.05 level, respectively.
    下载: 导出CSV
  • [1] LIU Z J, LIU S K, YAO J, et al. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts [J]. Nature Communications, 2016, 7(1): 1−13.
    [2] ZHONG L Q, SONG C, CHEN X H, et al. Channel catfish in China: Historical aspects, current status, and problems [J]. Aquaculture, 2016, 465: 367−373. doi: 10.1016/j.aquaculture.2016.09.032
    [3] APPELLA E, WEBER I T, BLASI F. Structure and function of epidermal growth factor-like regions in proteins [J]. FEBS Letters, 1988, 231(1): 1−4. doi: 10.1016/0014-5793(88)80690-2
    [4] HAY D C, ROSS J A, GALLAGHER R, et al. The complexities of engineering human stem cell-derived therapeutics [J]. Journal of Biomedicine & Biotechnology, 2010, DOI: 10.1155/2010/654964.
    [5] 尹凯, 申传安, 尚玉茹, 等. 人表皮生长因子基因修饰细胞在创面修复中作用的研究进展 [J]. 中华损伤与修复杂志(电子版), 2014, 9(6):672−675.

    YIN K, SHEN C A, SHANG Y R, et al. Research progress of human epidermal growth factor gene modified cells in wound repair [J]. Chinese Journal of Injury Repair and Wound Healing (Electronic Edition), 2014, 9(6): 672−675.(in Chinese)
    [6] SUN D, BULLOCK M R, ALTEMEMI N, et al. The effect of epidermal growth factor in the injured brain after trauma in rats [J]. Journal of Neurotrauma, 2010, 27(5): 923−938. doi: 10.1089/neu.2009.1209
    [7] WANG Y, SONG H J, WANG W F, et al. Generation and characterization of Megf6 null and Cre knock-in alleles [J]. Genesis, 2019, 57(2): e23262. doi: 10.1002/dvg.23262
    [8] LI C C, VARGAS-FRANCO D, SAHA M, et al. Megf10 deficiency impairs skeletal muscle stem cell migration and muscle regeneration [J]. FEBS Open Bio, 2021, 11(1): 114−123. doi: 10.1002/2211-5463.13031
    [9] LLOYD D L, TOEGEL M, FULGA T A, et al. The Drosophila homologue of MEGF8 is essential for early development [J]. Scientific Reports, 2018, 8(1): 1−10.
    [10] JOHNSON E B, HAMMER R E, HERZ J. Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice [J]. Human Molecular Genetics, 2005, 14(22): 3523−3538. doi: 10.1093/hmg/ddi381
    [11] ZHANG S Y, ZHANG X H, CHEN X H, et al. Construction of a high-density linkage map and QTL fine mapping for growth- and sex-related traits in channel catfish (Ictalurus punctatus) [J]. Frontiers in Genetics, 2019, 10: 251. doi: 10.3389/fgene.2019.00251
    [12] BRANDT-BOHNE U, KEENE D R, WHITE F A, et al. MEGF9: A novel transmembrane protein with a strong and developmentally regulated expression in the nervous system [J]. The Biochemical Journal, 2007, 401(2): 447−457. doi: 10.1042/BJ20060691
    [13] 梁红玲, 李洪胜, 黄健清, 等. Sanger测序法和Snapshot法检测乳腺癌BIM缺失多态性比较分析 [J]. 循证医学, 2018, 18(6):370−375.

    LIANG H L, LI H S, HUANG J Q, et al. Study on the concordance of BIM deletion polymorphism tests by Sanger sequencing and snapshot methods in breast cancer [J]. The Journal of Evidence-Based Medicine, 2018, 18(6): 370−375.(in Chinese)
    [14] 贾子冬, 徐高连, 钟华燕, 等. PCR-LDR-核酸试纸条检测法在结核分枝杆菌katG基因315位密码子突变检测中的应用 [J]. 临床肺科杂志, 2011, 16(11):1721−1723. doi: 10.3969/j.issn.1009-6663.2011.11.031

    JIA Z D, XU G L, ZHONG H Y, et al. Application of PCR-LDR-nucleic acid detection strip in detection of KatG315-mutation in TB [J]. Journal of Clinical Pulmonary Medicine, 2011, 16(11): 1721−1723.(in Chinese) doi: 10.3969/j.issn.1009-6663.2011.11.031
    [15] 张世勇, 王明华, 钟立强, 等. 斑点叉尾MSTN基因4个SNP位点及其与生长性状的相关性 [J]. 江苏农业科学, 2017, 45(1):30−33.

    ZHANG S Y, WANG M H, ZHONG L Q, et al. Four SNP loci of MSTN gene and their correlation with growth traits [J]. Jiangsu Agricultural Sciences, 2017, 45(1): 30−33.(in Chinese)
    [16] CHEN Y X, CHEN Y S, SHI C M, et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data [J]. GigaScience, 2018, 7(1): gix120.
    [17] WATERHOUSE A, BERTONI M, BIENERT S, et al. SWISS-MODEL: Homology modelling of protein structures and complexes [J]. Nucleic Acids Research, 2018, 46(W1): W296−W303. doi: 10.1093/nar/gky427
    [18] YANG J Y, ANISHCHENKO I, PARK H, et al. Improved protein structure prediction using predicted interresidue orientations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(3): 1496−1503. doi: 10.1073/pnas.1914677117
    [19] 卫侃韵, 谢淑媚, 王沈同, 等. 缢蛏EGFR基因内含子1内SNP位点多态性与生长性状相关性 [J]. 水产学报, 2019, 43(2):483−491.

    WEI K Y, XIE S M, WANG S T, et al. Polymorphism of SNPs in EGFR intron 1 and its association with growth traits in Sinonovacula constricta [J]. Journal of Fisheries of China, 2019, 43(2): 483−491.(in Chinese)
    [20] DE GOBBI M, VIPRAKASIT V, HUGHES J R, et al. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter [J]. Science, 2006, 312(5777): 1215−1217. doi: 10.1126/science.1126431
    [21] 李哲, 李雨, 敬庭森, 等. 长吻单核苷酸多态性标记与生长性状关联分析 [J]. 渔业科学进展, 2022, 43(4):127−135. doi: 10.19663/j.issn2095-9869.20210412001

    LI Z, LI Y, JING T S, et al. Correlation analysis of SNP markers and growth traits of Leiocassis longirostris [J]. Progress in Fishery Sciences, 2022, 43(4): 127−135.(in Chinese) doi: 10.19663/j.issn2095-9869.20210412001
    [22] LIU H F, XU H W, LAN X Y, et al. The InDel variants of sheep IGF2BP1 gene are associated with growth traits [J]. Animal Biotechnology, 2021, 13: 1−9.
    [23] 陈静, 何吉祥, 樊佳佳, 等. 草鱼MyoD基因SNP和Indel标记的筛选及其与生长性状的关联分析 [J]. 江苏农业学报, 2018, 34(3):612−616. doi: 10.3969/j.issn.1000-4440.2018.03.019

    CHEN J, HE J X, FAN J J, et al. Screening of SNP and Indel marker of MyoD gene and its association with growth traits in Ctenopharyngodon idella [J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(3): 612−616.(in Chinese) doi: 10.3969/j.issn.1000-4440.2018.03.019
    [24] MAO C, AKHATAYEVA Z, CHENG H J, et al. A novel 23 bp indel mutation in PRL gene is associated with growth traits in Luxi Blackhead sheep [J]. Animal Biotechnology, 2021, 32(6): 740−747. doi: 10.1080/10495398.2020.1753757
    [25] JIANG L F, ZHOU X D, XU K, et al. miR-7/EGFR/MEGF9 axis regulates cartilage degradation in osteoarthritis via PI3K/AKT/mTOR signaling pathway [J]. Bioengineered, 2021, 12(1): 8622−8634. doi: 10.1080/21655979.2021.1988362
    [26] ALFONSI M, PALKA C, MORIZIO E, et al. De novo 9q33 microdeletion identified by array-comparative genomic hybridization in a foetus with sex reversal and congenital heart defects [J]. Clinical Dysmorphology, 2013, 22(3): 132−134. doi: 10.1097/MCD.0b013e328363023b
    [27] WANG W F, ZHENG X L, SONG H J, et al. Spatial and temporal deletion reveals a latent effect of Megf8 on the left-right patterning and heart development [J]. Differentiation, 2020, 113: 19−25. doi: 10.1016/j.diff.2020.03.002
    [28] 陈雷, 姚锋, 唐爽, 等. 刺参多功能表皮生长因子6(megf6)cDNA克隆及在肠再生过程中的表达分析 [J]. 大连海洋大学学报, 2020, 35(2):239−246. doi: 10.16535/j.cnki.dlhyxb.2019-320

    CHEN L, YAO F, TANG S, et al. cDNA cloning and expression of multiple epidermal growth factor 6 (megf6) gene in sea cucumber Apostichopus japonicus during intestine regeneration [J]. Journal of Dalian Ocean University, 2020, 35(2): 239−246.(in Chinese) doi: 10.16535/j.cnki.dlhyxb.2019-320
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  346
  • HTML全文浏览量:  166
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 录用日期:  2022-11-07
  • 修回日期:  2023-03-08
  • 网络出版日期:  2023-04-14
  • 刊出日期:  2023-03-28

目录

    /

    返回文章
    返回