• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

番茄WRKY转录因子比较鉴定及细菌胁迫响应

Identification and Pathogenic Response of Tomato WRKY Transcription Factors

  • 摘要:
      目的  深入了解番茄WRKY转录因子的组学特征及其生物胁迫响应。
      方法  基于最新公共数据,利用生物信息学和比较基因组学方法对番茄WRKY进行系统鉴定,结合抗、感2个番茄自交系在青枯菌侵染前后的RNA-seq数据,挖掘青枯病抗性相关WRKY。
      结果  85个番茄WRKY转录因子被鉴定,可分为I、IIa+b、IIc、IId+e和III等类别,IIe基因最多。其中,9个基因七肽基序发生了单一氨基酸变异,WRKYGKK为优势突变型。这些WRKY主要分布在5号染色体,且具有端部和成簇分布现象,尤其是IIe亚类。45.88%的番茄WRKY具有共线性。58.82%的番茄WRKY(主要是I和IIc类)与拟南芥和辣椒WRKY形成73对直系同源基因,其选择压力(Ka/Ks)均小于1。16个番茄WRKY(主要是IIa+b和IIc类)对几种生物胁迫反应强烈,且主要在根中表达。12个差异表达WRKY(主要是III和IIb类)被鉴定,其中Solyc03g095770.3(III)与Solyc09g014990.4(I)互作在番茄青枯病响应中发挥重要作用。
      结论  综合鉴定了番茄WRKY转录因子,筛选到12个青枯病响应基因。

     

    Abstract:
      Objective  Characteristics and biotic stress response of WRKY transcription factors (TFs) in tomato plants were investigated.
      Method   The latest available bioinformatics and genomics methods were employed to identify the tomato WRKY TFs. RNA-seq of disease-resistant and susceptible tomato inbred lines before and after artificial Ralstonia solanacearum infection were obtained to identify the TFs associated with the pathogenic resistance of the plants.
      Result  Eighty-five tomato WRKY TFs were identified and divided into I, IIa+b, IIc, IId+e, and III categories. The IIe group had the highest number of the TFs. The conserved motif of 9 TFs had one single amino acid variation, and WRKYGKK was the dominant mutant. The TFs, especially those in the IIe group, were mainly found on chromosome 5, at the ends, and in clusters. In them, 45.88% showed collinearity and 58.82% (mainly in I and IIc groups) formed 73 pairs of orthologs with those in Arabidopsis and chili pepper at a Ka/Ks ratio below 1. Sixteen of them, mainly belonging to IIa+b and IIc, responded significantly to the biotic stress with expressions largely in the roots. There were 12 differentially expressed WRKY TFs identified mainly in III and IIb. Of which, the interaction between Solyc03g095770.3 (III) and Solyc09g014990.4 (I) played a significant role in the response of the tomato plant to bacterial wilt.
      Conclusion  The WRKY TFs were identified in tomato plants. Twelve genes responded to the bacterial wilt were isolated.

     

/

返回文章
返回