• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大白菜F-BOX基因家族的鉴定与核盘菌诱导应答分析

冯冬林 钟开勤 丁玲 刘美琴

冯冬林,钟开勤,丁玲,等. 大白菜F-BOX基因家族的鉴定与核盘菌诱导应答分析 [J]. 福建农业学报,2023,38(3):294−301 doi: 10.19303/j.issn.1008-0384.2023.03.005
引用本文: 冯冬林,钟开勤,丁玲,等. 大白菜F-BOX基因家族的鉴定与核盘菌诱导应答分析 [J]. 福建农业学报,2023,38(3):294−301 doi: 10.19303/j.issn.1008-0384.2023.03.005
FENG D L, ZHONG K Q, DING L, et al. Genome-wide Identification and Transcript Response to Sclerotinia of F-BOX Genes in Chinese Cabbage [J]. Fujian Journal of Agricultural Sciences,2023,38(3):294−301 doi: 10.19303/j.issn.1008-0384.2023.03.005
Citation: FENG D L, ZHONG K Q, DING L, et al. Genome-wide Identification and Transcript Response to Sclerotinia of F-BOX Genes in Chinese Cabbage [J]. Fujian Journal of Agricultural Sciences,2023,38(3):294−301 doi: 10.19303/j.issn.1008-0384.2023.03.005

大白菜F-BOX基因家族的鉴定与核盘菌诱导应答分析

doi: 10.19303/j.issn.1008-0384.2023.03.005
基金项目: 福建省科技计划引导性项目(2020N0022);福建省现代农业蔬菜产业技术体系项目(闽财教指〔2021〕61号);福建农业职业技术学院科技项目(2019JS008)
详细信息
    作者简介:

    冯冬林(1978−),男,博士研究生,副教授,主要从事蔬菜栽培及遗传育种(E-mail:294910061@qq.com

  • 中图分类号: Q78;S634.1

Genome-wide Identification and Transcript Response to Sclerotinia of F-BOX Genes in Chinese Cabbage

  • 摘要:   目的  筛选参与菌核病应答反应的F-BOX基因,为大白菜抗菌核病基因的功能研究及抗病品种的选育提供基础。  方法  基于核盘菌侵染大白菜转录组测序数据,对大白菜F-BOX基因家族进行鉴定,进行亚细胞定位、染色体定位、保守结构域等生物信息学分析。分析F-BOX基因在核盘菌侵染下的差异表达,并采用q-PCR技术检测F-BOX基因在0 h和36 h的表达情况。  结果  共鉴定32个BraF-BOX基因,分子量介于34751.13~105942.22 Da;亚细胞定位表明,26个F-BOX基因定位在细胞核和细胞质中,6个定位在叶绿体中;系统进化树分析将BraF-BOX分为4个亚族;基因结构分析结果表明,每个BraF-BOX家族成员均含有Motif 1,序列中均含有外显子;组织特异性表达分析结果表明在不同大白菜部位,表达量有差异;在核盘菌处理36 h时,q-PCR检测6个基因的相对表达量趋势与转录组数据一致,其中Bra037120Bra011427Bra009835等3个基因表达上调,核盘菌侵染时间越长,表达量越大。  结论  综合BraF-BOX基因生物信息学及转录组数据分析,Bra037120Bra011427Bra009835基因可能参与大白菜菌核病抗性功能,为后续基因功能研究提供研究基础。
  • 图  1  大白菜和拟南芥F-BOX家族进化树

    Bra:大白菜;At:拟南芥。

    Figure  1.  Unrooted phylogenetic tree of F-BOX family between B. rapa and A. thaliana

    Bra: B. rapa; At: Arabidopsis thaliana.

    图  2  大白菜F-BOX基因在染色体上的分布

    Figure  2.  Distribution of F-BOX in chromosomes of B. rapa

    图  3  大白菜F-BOX基因家族的进化树和保守基序

    Figure  3.  Phylogenetic relationships and motif of F-BOX family in B. rapa

    图  4  大白菜F-BOX家族保守基序

    Figure  4.  Conserved motifs of F-BOX family in B. rapa

    图  5  大白菜F-BOX基因家族的进化树和基因结构

    Figure  5.  Phylogenetic relationships and gene structure of F-BOX family in B. rapa

    图  6  F-BOX基因在大白菜不同组织中的表达模式

    Figure  6.  Expressions of F-BOX in different tissues of B. rapa

    图  7  BraF-BOX在核盘菌诱导下的表达分析

    Figure  7.  Expressions of BraF-BOX in response to sclerotinia induction

    图  8  BraF-BOX基因核盘菌诱导表达的qRT-PCR验证

    Figure  8.  Expressions of BraF-BOX in response to sclerotinia induction by qRT-PCR

    表  1  荧光定量PCR引物

    Table  1.   Primers for RT q-PCR

    基因名称
    Gene name
    基因序列(5′-3′)
    Primer sequence (5′-3′)
    Bra037120 GTGCGTTGAGGAAGTTCTGTAT
    TCTCTTAGCCATTCTCCAATCTCT
    Bra003518 ATGATGCGTTGGTAGCGATT
    CATCCAGTGGCTCTAGTGTTAG
    Bra009835 CTCCTCTGCCATCATCATCAAC
    CATCCGTCACTCCGTTCAATC
    Bra011427 CGTATCACAATCGCTTCCAACT
    GGCATCCACCATCATCACTG
    Bra011207 GACATCTTCTCACGCCTTAGC
    TCGGGAATCCACCAGTTGAT
    Bra010279 GGAAGTCAACGACGAAGGAG
    ACGGTTAGCCGTGAGAAGAT
    下载: 导出CSV

    表  2  大白菜F-BOX家族基因理化性质

    Table  2.   Physiochemical properties of F-BOX family genes in B. rapa

    基因名称
    Gene name
    理论等电点
    pI
    分子量
    Molecular weight/Da
    氨基酸大小
    Amino acids
    脂肪系数
    Aliphatic index
    不稳定系数
    Instability index
    亲水性
    GRAVY
    亚细胞定位
    Subcellular location
    Bra0114275.1672453.74660105.0652.400.168细胞核 Nuclear
    Bra0112075.8035574.1231091.8150.55−0.093细胞质 Cytoplasmic
    Bra0299948.8155946.1351199.9643.480.002细胞质 Cytoplasmic
    Bra036542 8.3465257.9761699.6643.790.114细胞核 Nuclear
    Bra0167546.1766444.7259097.8548.47−0.091细胞质 Cytoplasmic
    Bra0366078.3670484.33639113.3532.680.137细胞核 Nuclear
    Bra0102795.9334751.1330184.8554.23−0.327细胞质 Cytoplasmic
    Bra0172455.53105942.22949105.1644.320.077细胞核 Nuclear
    Bra0056698.7372644.85668109.3136.410.158细胞核 Nuclear
    Bra0296568.0243507.11395103.1141.000.058细胞质 Cytoplasmic
    Bra0099318.5870575.49640114.7534.010.142细胞质 Cytoplasmic
    Bra0036926.8339588.7935998.5844.580.020细胞质 Cytoplasmic
    Bra0322138.7856034.2551498.6850.560.016叶绿体 Chloroplst
    Bra0293678.2644895.2411102.9231.440.037叶绿体 Chloroplst
    Bra0096716.2643986.92405104.2234.750.077细胞质 Cytoplasmic
    Bra0084617.4152042.84467112.4435.060.131细胞核 Nuclear
    Bra0342547.2965953.34622104.0842.070.187细胞核 Nuclear
    Bra0240555.8734885.2330484.9045.33−0.276细胞核 Nuclear
    Bra0345516.1897726.55890107.1547.880.179细胞质 Cytoplasmic
    Bra0156997.4539102.2435497.5142.73−0.012细胞核 Nuclear
    Bra0164227.4238869.1135397.5442.430.038细胞质 Cytoplasmic
    Bra0127858.7567864.12632104.3241.690.150叶绿体 Chloroplst
    Bra0329546.6164664.6157596.3146.97−0.077细胞核 Nuclear
    Bra0145685.2574292.7766693.2734.90−0.176细胞核 Nuclear
    Bra0006045.5467952.3360787.2354.69−0.101叶绿体 Chloroplst
    Bra0373245.0268165.97619102.2338.77−0.060细胞核 Nuclear
    Bra0371208.2056893.4952692.3038.63−0.103叶绿体 Chloroplst
    Bra0035187.9466765.5459495.8151.87−0.014细胞核 Nuclear
    Bra0098358.4165245.0862299.9744.730.166细胞核 Nuclear
    Bra0008425.5765632.1558699.1343.70−0.032细胞质 Cytoplasmic
    Bra0269536.3565169.1657895.8345.94−0.118细胞核 Nuclear
    Bra0341918.1466378.1458596.4647.23−0.117叶绿体 Chloroplst
    下载: 导出CSV
  • [1] 孙叶烁, 郝玲玉, 张杰, 等. 大白菜菌核病抗性鉴定方法研究 [J]. 西北农林科技大学学报(自然科学版), 2019, 47(12):123−129. doi: 10.13207/j.cnki.jnwafu.2019.12.015

    SUN Y S, HAO L Y, ZHANG J, et al. Identification method of resistance to Sclerotinia in Chinese cabbage [J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(12): 123−129.(in Chinese) doi: 10.13207/j.cnki.jnwafu.2019.12.015
    [2] KUMAR A, PAIETTA J V. The sulfur controller-2 negative regulatory gene of Neurospora crassa encodes a protein with beta-transducin repeats [J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(8): 3343−3347. doi: 10.1073/pnas.92.8.3343
    [3] BAI C, SEN P, HOFMANN K, et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box [J]. Cell, 1996, 86(2): 263−274. doi: 10.1016/S0092-8674(00)80098-7
    [4] KIPREOS E T, PAGANO M. The F-box protein family [J]. Genome Biology, 2000, 1(5): REVIEWS3002.
    [5] MO F L, ZHANG N, QIU Y W, et al. Molecular characterization, gene evolution and expression analysis of the F-box gene family in tomato (Solanum lycopersicum) [J]. Genes, 2021, 12(3): 417. doi: 10.3390/genes12030417
    [6] GAGNE J M, DOWNES B P, SHIU S H, et al. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(17): 11519−11524. doi: 10.1073/pnas.162339999
    [7] JAIN M, NIJHAWAN A, ARORA R, et al. F-box proteins in rice. genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress [J]. Plant Physiology, 2007, 143(4): 1467−1483. doi: 10.1104/pp.106.091900
    [8] JIA F J, WU B J, LI H, et al. Genome-wide identification and characterisation of F-box family in maize [J]. Molecular Genetics and Genomics, 2013, 288(11): 559−577. doi: 10.1007/s00438-013-0769-1
    [9] ZHANG S L, TIAN Z L, LI H P, et al. Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L [J]. BMC Genomics, 2019, 20(1): 993. doi: 10.1186/s12864-019-6280-2
    [10] JIA Q, XIAO Z X, WONG F L, et al. Genome-wide analyses of the soybean F-Box gene family in response to salt stress [J]. International Journal of Molecular Sciences, 2017, 18(4): 818−835. doi: 10.3390/ijms18040818
    [11] 崔浩然. 苹果基因组中F-box基因家族的鉴定及分析[D]. 泰安: 山东农业大学, 2015.

    CUI H R. Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome[D]. Taian: Shandong Agricultural University, 2015. (in Chinese)
    [12] WANG G M, YIN H, QIAO X, et al. F-box genes: Genome-wide expansion, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri) [J]. Plant Science, 2016, 253: 164−175. doi: 10.1016/j.plantsci.2016.09.009
    [13] ABD-HAMID N A, AHMAD-FAUZI M I, ZAINAL Z, et al. Diverse and dynamic roles of F-box proteins in plant biology [J]. Planta, 2020, 251(3): 68. doi: 10.1007/s00425-020-03356-8
    [14] SCHUMANN N, NAVARRO-QUEZADA A, ULLRICH K, et al. Molecular evolution and selection patterns of plant F-box proteins with C-terminal kelch repeats [J]. Plant Physiology, 2011, 155(2): 835−850. doi: 10.1104/pp.110.166579
    [15] XU G X, MA H, NEI M, et al. Evolution of F-box genes in plants: Different modes of sequence divergence and their relationships with functional diversification [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(3): 835−840. doi: 10.1073/pnas.0812043106
    [16] NAVARRO-QUEZADA A, SCHUMANN N, QUINT M. Plant F-box protein evolution is determined by lineage-specific timing of major gene family expansion waves [J]. PLoS One, 2013, 8(7): e68672. doi: 10.1371/journal.pone.0068672
    [17] CAO Y F, YANG Y Y, ZHANG H J, et al. Overexpression of a rice defense-related F-box protein geneOsDRF 1 in tobacco improves disease resistance through potentiation of defense gene expression [J]. Physiologia Plantarum, 2008, 134(3): 440−452. doi: 10.1111/j.1399-3054.2008.01149.x
    [18] PIISILÄ M, KECELI M A, BRADER G, et al. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana [J]. BMC Plant Biology, 2015, 15: 53. doi: 10.1186/s12870-015-0434-4
    [19] 魏春茹, 孟钰玉, 范润侨, 等. 小麦F-box/Kelch类基因TaFKOR23的抗逆相关表达模式及分子互作蛋白鉴定 [J]. 植物遗传资源学报, 2020, 21(3):695−705. doi: 10.13430/j.cnki.jpgr.20190626002

    WEI C R, MENG Y Y, FAN R Q, et al. Stress-related expression profile of F-box/kelch gene TaFKOR23 in wheat and molecular characterization of the interacting target protein [J]. Journal of Plant Genetic Resources, 2020, 21(3): 695−705.(in Chinese) doi: 10.13430/j.cnki.jpgr.20190626002
    [20] KIM J, LEE J, CHOI J P, et al. Functional innovations of three chronological mesohexaploid Brassica rapa genomes [J]. BMC Genomics, 2014, 15(1): 606. doi: 10.1186/1471-2164-15-606
    [21] BELKHADIR Y, SUBRAMANIAM R, DANGL J L. Plant disease resistance protein signaling: NBS–LRR proteins and their partners [J]. Current Opinion in Plant Biology, 2004, 7(4): 391−399. doi: 10.1016/j.pbi.2004.05.009
    [22] SUN J M, LI L T, WANG P, et al. Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes [J]. BMC Genomics, 2017, 18(1): 763. doi: 10.1186/s12864-017-4155-y
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  122
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 录用日期:  2023-01-06
  • 修回日期:  2023-02-11
  • 网络出版日期:  2023-04-14
  • 刊出日期:  2023-03-28

目录

    /

    返回文章
    返回