• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长期施肥对赤红壤旱地有机质含量影响及其灰色预测研究

李娟 张立成 章明清 张辉 张永春

李娟,张立成,章明清,等. 长期施肥对赤红壤旱地有机质含量影响及其灰色预测研究 [J]. 福建农业学报,2023,38(3):352−359 doi: 10.19303/j.issn.1008-0384.2023.03.012
引用本文: 李娟,张立成,章明清,等. 长期施肥对赤红壤旱地有机质含量影响及其灰色预测研究 [J]. 福建农业学报,2023,38(3):352−359 doi: 10.19303/j.issn.1008-0384.2023.03.012
LI J, ZHANG L C, ZHANG M Q, et al. Organic Matter Content and Its Grey Prediction in Latosolic Red Soil Affected by Long-Term Fertilization [J]. Fujian Journal of Agricultural Sciences,2023,38(3):352−359 doi: 10.19303/j.issn.1008-0384.2023.03.012
Citation: LI J, ZHANG L C, ZHANG M Q, et al. Organic Matter Content and Its Grey Prediction in Latosolic Red Soil Affected by Long-Term Fertilization [J]. Fujian Journal of Agricultural Sciences,2023,38(3):352−359 doi: 10.19303/j.issn.1008-0384.2023.03.012

长期施肥对赤红壤旱地有机质含量影响及其灰色预测研究

doi: 10.19303/j.issn.1008-0384.2023.03.012
基金项目: 福建省科技计划公益类专项(2021R1025005);福建省高质量发展超越“5511”协同创新工程项目(XTCXGC2021009);国家现代农业产业技术体系建设专项(CARS-10-B9)
详细信息
    作者简介:

    李娟(1977−),女,硕士,副研究员,研究方向:作物营养与施肥(E-mail:lj-95@163.com

    通讯作者:

    章明清(1963−),男,博士,研究员,研究方向:作物施肥原理和技术(E-mail:zhangmq2001@163.com

  • 中图分类号: S156; S158

Organic Matter Content and Its Grey Prediction in Latosolic Red Soil Affected by Long-Term Fertilization

  • 摘要:   目的  阐明长期不同施肥处理对赤红壤旱地土壤有机质(SOM)含量的影响,为区域土壤培肥和高产稳产提供最佳养分管理依据。  方法  根据闽东南旱地花生-甘薯轮作制赤红壤连续16年化肥定位试验和14年化肥配施有机肥定位试验的历年SOM含量监测结果,探讨长期施肥下SOM含量动态变化,构建SOM灰色预测模型。  结果  与不施肥相比,施肥均能提高土壤SOM含量;化肥推荐施肥模式的SOM含量为(19.83±0.77)g·kg−1,显著高于其他化肥处理;化肥配施有机肥可进一步提高SOM含量,尤其是配施农家腐熟猪粪的SOM达到(22.53±1.69) g·kg−1,年递增速率是化肥推荐施肥的2.8倍。SOM灰色预测模型显示,不同施肥模式的拟合误差在1.226%~3.307%。不施肥模式的SOM含量变化趋势仍然处于下降状态;化肥推荐施肥模式的SOM趋势值为(20.220±0.002)g·kg−1,在该试验点中排序第一;化肥配施有机肥均提高了SOM长期趋势值,尤其是配施农家腐熟猪粪的SOM趋势值达到(23.777±0.017)g·kg−1,排序位居第一,显著高于该试验点的化肥推荐施肥模式。  结论  从SOM含量和未来含量趋势综合评价,化肥推荐施肥有利于提高赤红壤旱地SOM含量,在推荐施肥基础上配施有机肥尤其是配施农家腐熟猪粪的效果更佳。
  • 图  1  化肥定位试验的TPGM(1,1)模型对历年土壤有机质含量的模拟结果

    Figure  1.  Simulated SOM under chemical fertilizations in years using TPGM (1,1) model

    图  2  化肥配施有机肥定位试验的TPGM(1,1)模型对历年土壤有机质含量的模拟结果

    Figure  2.  Simulated SOM under chemical/organic fertilizations in years using TPGM (1,1) model

    表  1  花生-甘薯轮作制长期定位试验设计方案

    Table  1.   Long-term fertilizeration experiment on fields of peanut-sweet potato rotating cultivation

    试验点
    Sites
    处理
    Treatments
    花生施肥量
    Fertilizer application rate on peanut/(kg·hm−2)
    甘薯施肥量
    Fertilizer application rate on sweet potato/(kg·hm−2)
    NP2O5K2O有机肥
    Manure
    NP2O5K2O有机肥
    Manure
    化肥
    Chemical fertilizer
    对照 CK 0 0 0 0 0 0
    习惯施肥 FP 90 45 75 225 45 150
    推荐施肥 RF 75 60 90 180 45 225
    推荐施肥减氮 RF-N 0 60 90 0 45 225
    推荐施肥减磷 RF-P 75 0 90 180 0 225
    推荐施肥减钾 RF-K 75 60 0 180 45 0
    化肥配施有机肥
    Chemical and organic fertilizer
    对照 CK 0 0 0 0 0 0 0 0
    推荐施肥 RF 75 60 90 0 180 60 225 0
    推荐施肥+有机肥 RF+CM 50 40 60 1995 120 40 150 4140
    推荐施肥+猪粪 RF+PM 50 50 71 6585 120 35 177 15795
    推荐施肥+稻草 RF+S 50 57 38 2745 120 51 101 6600
    下载: 导出CSV

    表  2  不同年限轮作体系中各施肥模式的土壤有机质含量

    Table  2.   SOM in soil of designed long-term experiment with varied fertilizations

    试验点
    Site
    处理
    Treatment
    不同年限的土壤有机质含量
    SOM content over experimental years/(g∙kg−1
    平均
    Average/(g∙kg−1
    年均递增
    Average annual increment/(g∙kg−1
    1~5年6~10年11~16年*
    化肥
    Chemical fertilizer
    CK17.41±0.60 c17.45±0.36 d16.05±0.43 e16.91±0.76 e−0.056
    FP18.60±0.60 b19.32±0.65 b19.65±0.48 b19.22±0.64 b0.089
    RF19.11±0.72 a19.98±0.76 a20.31±0.93 a19.83±0.77 a0.127
    RF-N18.13±0.46 b18.28±0.52 c17.80±0.74 d18.04±0.56 d0.015
    RF-P18.50±0.54 b18.83±0.80 b18.46±0.83 c18.54±0.61 c0.046
    RF-K18.33±0.46 b19.02±0.56 b18.56±0.58 c18.59±0.76 c0.049
    化肥配施有机肥
    Chemical and organic fertilizer
    CK17.31±0.58 c17.50±0.99 d15.96±0.78 c16.99±0.91 e−0.009
    RF18.23±0.64 b18.84±0.63 c20.32±1.06 b19.04±1.09 d0.137
    RF+CM18.08±0.94 bc20.89±0.95 b21.11±0.96 b19.95±1.63 c0.202
    RF+PG20.74±1.58 a23.29±1.02 a23.81±0.96 a22.53±1.69 a0.386
    RF+S18.89±1.20 b22.57±0.86 a22.79±0.61 a21.32±1.03 b0.300
    *化肥配施有机肥定位试验的第3个时间段年限是第11~14年;年均递增率= (SOM均值–基础土壤SOM) /试验年限。
    *: 3rd period chemical/organic fertilization from year 11 to year 14; average annual increase rate = (mean SOM – basic SOM in soil)/test duration, year.
    下载: 导出CSV

    表  3  长期化肥不同施肥模式下土壤有机质动态的TPGM(1,1)模型拟合参数及其预测结果

    Table  3.   Fitting parameters and predicted values by TPGM (1,1) model for SOM under long-term chemical fertilizations

    处理
    Treatments
    TPGM(1,1)模型参数
    TPGM(1,1) model parameters
    模拟误差
    Fitting error/%
    未来5年预测值
    Predicted value in the
    next 5 years/(g·kg−1)
    预测值排序
    Predicted
    value sorting
    φ1φ2φ3
    CK1.093−1.70819.4992.18015.020±0.5676
    FP0.7365.16612.3121.66919.590±0.0052
    RF0.6656.77310.4871.82620.220±0.0021
    RF-N0.6166.97411.1512.11218.178±0.0005
    RF-P0.5957.58010.3712.27418.723±0.0004
    RF-K0.5468.5289.0321.22618.783±0.0003
    下载: 导出CSV

    表  4  长期化肥配施不同有机肥模式的土壤有机质动态TPGM(1,1)模型拟合参数及其预测结果

    Table  4.   Fitting parameters and predicted values by TPGM (1,1) model for SOM under long-term chemical/organic fertilizations

    处理
    Treatment
    TPGM(1,1)模型参数
    TPGM(1,1) model parameters
    模拟误差
    Fitting error/%
    未来5年预测值
    Predicted value in the
    next 5 year/(g·kg−1
    预测值排序
    Predicted
    value Sorting
    φ1φ2φ3
    CK1.017−0.41718.3833.30715.864±0.1975
    RF0.9790.59716.8022.52620.593±0.2254
    RF+CM0.8343.65212.3902.91521.634±0.0883
    RF+PG0.7086.9639.4991.39123.777±0.0171
    RF+S0.7855.03110.5062.41223.223±0.0632
    下载: 导出CSV
  • [1] SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property [J]. Nature, 2011, 478(7367): 49−56. doi: 10.1038/nature10386
    [2] LAL R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004, 304(5677): 1623−1627. doi: 10.1126/science.1097396
    [3] LU F, WANG X K, HAN B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland [J]. Global Change Biology, 2009, 15(2): 281−305. doi: 10.1111/j.1365-2486.2008.01743.x
    [4] 蔡岸冬, 张文菊, 杨品品, 等. 基于Meta-Analysis研究施肥对中国农田土壤有机碳及其组分的影响 [J]. 中国农业科学, 2015, 48(15):2995−3004. doi: 10.3864/j.issn.0578-1752.2015.15.009

    CAI A D, ZHANG W J, YANG P P, et al. Effect degree of fertilization practices on soil organic carbon and fraction of croplands in China—Based on meta-analysis [J]. Scientia Agricultura Sinica, 2015, 48(15): 2995−3004.(in Chinese) doi: 10.3864/j.issn.0578-1752.2015.15.009
    [5] ZHANG W J, WANG X J, XU M G, et al. Soil organic carbon dynamics under long-term fertilizations in arable land of Northern China [J]. Biogeosciences, 2010, 7(2): 409−425. doi: 10.5194/bg-7-409-2010
    [6] HUANG S, PENG X X, HUANG Q R, et al. Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China [J]. Geoderma, 2010, 154(3/4): 364−369.
    [7] 孟磊, 丁维新, 蔡祖聪, 等. 长期定量施肥对土壤有机碳储量和土壤呼吸影响 [J]. 地球科学进展, 2005, 20(6):687−692. doi: 10.3321/j.issn:1001-8166.2005.06.013

    MENG L, DING W X, CAI Z C, et al. Storage of soil organic c and soil respiration as effected by long-term quantitative fertilization [J]. Advance in Earth Sciences, 2005, 20(6): 687−692.(in Chinese) doi: 10.3321/j.issn:1001-8166.2005.06.013
    [8] 王晓娇, 齐鹏, 蔡立群, 等. 培肥措施对旱地农田产量可持续性及土壤有机碳库稳定性的影响 [J]. 草业学报, 2020, 29(10):58−69. doi: 10.11686/cyxb2020187

    WANG X J, QI P, CAI L Q, et al. Effects of alternative fertilization practices on components of the soil organic carbon pool and yield stability in rain-fed maize production on the Loess Plateau [J]. Acta Prataculturae Sinica, 2020, 29(10): 58−69.(in Chinese) doi: 10.11686/cyxb2020187
    [9] BAJGAI Y, KRISTIANSEN P, HULUGALLE N, et al. Changes in soil carbon fractions due to incorporating corn residues in organic and conventional vegetable farming systems [J]. Soil Research, 2014, 52(3): 244. doi: 10.1071/SR13295
    [10] 兰延, 黄国勤, 杨滨娟, 等. 稻田绿肥轮作提高土壤养分增加有机碳库 [J]. 农业工程学报, 2014, 30(13):146−152. doi: 10.3969/j.issn.1002-6819.2014.13.018

    LAN Y, HUANG G Q, YANG B J, et al. Effect of green manure rotation on soil fertility and organic carbon pool [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13): 146−152.(in Chinese) doi: 10.3969/j.issn.1002-6819.2014.13.018
    [11] 田康, 赵永存, 邢喆, 等. 中国保护性耕作农田土壤有机碳变化速率研究: 基于长期试验点的Meta分析 [J]. 土壤学报, 2013, 50(3):433−440.

    TIAN K, ZHAO Y C, XING Z, et al. A meta-analysis of long-term experiment data for characterizing the topsoil organic carbon changes under different conservation tillage in cropland of China [J]. Acta Pedologica Sinica, 2013, 50(3): 433−440.(in Chinese)
    [12] 金琳, 李玉娥, 高清竹, 等. 中国农田管理土壤碳汇估算 [J]. 中国农业科学, 2008, 41(3):734−743. doi: 10.3864/j.issn.0578-1752.2008.03.014

    JIN L, LI Y E, GAO Q Z, et al. Estimate of carbon sequestration under cropland management in China [J]. Scientia Agricultura Sinica, 2008, 41(3): 734−743.(in Chinese) doi: 10.3864/j.issn.0578-1752.2008.03.014
    [13] RUI W Y, ZHANG W J. Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China: A meta-analysis [J]. Agriculture, Ecosystems & Environment, 2010, 135(3): 199−205.
    [14] 章明清, 林琼, 杨杰, 等. 花生-甘薯轮作制中磷钾肥施肥模型研究 [J]. 土壤通报, 2004, 35(6):758−762. doi: 10.3321/j.issn:0564-3945.2004.06.019

    ZHANG M Q, LIN Q, YANG J, et al. Phosphate and potassium fertilizer application model in peanut and sweet potato rotation [J]. Chinese Journal of Soil Science, 2004, 35(6): 758−762.(in Chinese) doi: 10.3321/j.issn:0564-3945.2004.06.019
    [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 146-196.
    [16] 董春华, 曾闹华, 高菊生, 等. 长期不同施肥模式下红壤性稻田水稻产量及有机碳含量变化特征 [J]. 中国水稻科学, 2014, 28(2):193−198. doi: 10.3969/j.issn.1001-7216.2014.02.011

    DONG C H, ZENG N H, GAO J S, et al. Effects of different fertilization models on rice yield and soil organic carbon content in a long period in red soil paddy field [J]. Chinese Journal of Rice Science, 2014, 28(2): 193−198.(in Chinese) doi: 10.3969/j.issn.1001-7216.2014.02.011
    [17] 廖育林, 郑圣先, 聂军, 等. 长期施用化肥和稻草对红壤水稻土肥力和生产力持续性的影响 [J]. 中国农业科学, 2009, 42(10):3541−3550. doi: 10.3864/j.issn.0578-1752.2009.10.0020

    LIAO Y L, ZHENG S X, NIE J, et al. Effects of long-term application of fertilizer and rice straw on soil fertility and sustainability of a reddish paddy soil productivity [J]. Scientia Agricultura Sinica, 2009, 42(10): 3541−3550.(in Chinese) doi: 10.3864/j.issn.0578-1752.2009.10.0020
    [18] 高伟, 杨军, 任顺荣. 长期不同施肥模式下华北旱作潮土有机碳的平衡特征 [J]. 植物营养与肥料学报, 2015, 21(6):1465−1472. doi: 10.11674/zwyf.2015.0611

    GAO W, YANG J, REN S R. Balance characteristics of soil organic carbon under different long-term fertilization models in the upland fluvo-aquic soil of North China [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1465−1472.(in Chinese) doi: 10.11674/zwyf.2015.0611
    [19] 曾波, 尹小勇, 孟伟. 实用灰色预测建模方法及其MATLAB程序实现[M]. 北京: 科学出版社, 2018.
    [20] 刘思峰, 杨英杰, 吴利丰, 等. 灰色系统理论及其应用[M]. 第7版. 北京: 科学出版社, 2014.
    [21] 李娟, 张立成, 章明清, 等. 长期不同施肥模式下赤红壤旱地花生–甘薯轮作体系产量稳定性研究 [J]. 植物营养与肥料学报, 2021, 27(2):179−190. doi: 10.11674/zwyf.20285

    LI J, ZHANG L C, ZHANG M Q, et al. Yield stability in peanut-sweet potato rotation system under long-term combined application of chemical and organic fertilizers in latosolic red soil [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 179−190.(in Chinese) doi: 10.11674/zwyf.20285
    [22] 王成己, 潘根兴, 田有国. 保护性耕作下农田表土有机碳含量变化特征分析: 基于中国农业生态系统长期试验资料 [J]. 农业环境科学学报, 2009, 28(12):2464−2475. doi: 10.3321/j.issn:1672-2043.2009.12.005

    WANG C J, PAN G X, TIAN Y G. Characteristics of cropland topsoil organic carbon dynamics under different conservation tillage treatments based on long-term agro-ecosystem experiments across China’s mainland [J]. Journal of Agro-Environment Science, 2009, 28(12): 2464−2475.(in Chinese) doi: 10.3321/j.issn:1672-2043.2009.12.005
    [23] 许国根, 贾瑛, 黄智勇, 等. 预测理论与方法及其MATLAB实现[M]. 北京: 北京航空航天大学出版社, 2020: 186-210.
    [24] 张维理, KOLBE H, 张认连. 土壤有机碳作用及转化机制研究进展 [J]. 中国农业科学, 2020, 53(2):317−331. doi: 10.3864/j.issn.0578-1752.2020.02.007

    ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms [J]. Scientia Agricultura Sinica, 2020, 53(2): 317−331.(in Chinese) doi: 10.3864/j.issn.0578-1752.2020.02.007
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  137
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-09
  • 修回日期:  2023-02-01
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-03-28

目录

    /

    返回文章
    返回