• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海岛棉类受体胞质激酶RLCK VI家族全基因组鉴定与胁迫表达分析

赵曾强 朱金成 李洁玉 李志博 李有忠

赵曾强,朱金成,李洁玉,等. 海岛棉类受体胞质激酶RLCK VI家族全基因组鉴定与胁迫表达分析 [J]. 福建农业学报,2023,38(6):686−697 doi: 10.19303/j.issn.1008-0384.2023.06.007
引用本文: 赵曾强,朱金成,李洁玉,等. 海岛棉类受体胞质激酶RLCK VI家族全基因组鉴定与胁迫表达分析 [J]. 福建农业学报,2023,38(6):686−697 doi: 10.19303/j.issn.1008-0384.2023.06.007
ZHAO Z Q, ZHU J C, LI J Y, et al. Genome-wide Identification and Expressions under Stresses of RLCK VI Family in Gossypium barbadense [J]. Fujian Journal of Agricultural Sciences,2023,38(6):686−697 doi: 10.19303/j.issn.1008-0384.2023.06.007
Citation: ZHAO Z Q, ZHU J C, LI J Y, et al. Genome-wide Identification and Expressions under Stresses of RLCK VI Family in Gossypium barbadense [J]. Fujian Journal of Agricultural Sciences,2023,38(6):686−697 doi: 10.19303/j.issn.1008-0384.2023.06.007

海岛棉类受体胞质激酶RLCK VI家族全基因组鉴定与胁迫表达分析

doi: 10.19303/j.issn.1008-0384.2023.06.007
基金项目: 八师石河子市中青年科技创新领军人才计划项目(2020RC06);兵团重点领域创新团队建设计划项目(2019CB008);棉花生物学国家重点实验室开放课题(CB2021A09);国家自然科学基金项目(31560074)
详细信息
    作者简介:

    赵曾强(1985 —),男,助理研究员,研究方向:作物种质资源创制与应用(E-mail :tlx4109@126.com

    通讯作者:

    李有忠(1981 —),男,副研究员,研究方向:作物种质资源创制与应用(E-mail : lyz8095@sina.cn

  • 中图分类号: S562

Genome-wide Identification and Expressions under Stresses of RLCK VI Family in Gossypium barbadense

  • 摘要:   目的  对海岛棉(Gossypium barbadense)类受体胞质激酶RLCK VI(GbRLCK VI)家族基因进行全基因组分析,为深入研究 RLCK VI家族基因参与棉花生长发育和抗逆的调控机制提供参考。  方法  基于最新发布的海岛棉基因组数据,利用生物信息学手段对GbRLCK VI家族基因进行全基因组鉴定,并系统分析该家族基因成员的理化性质、序列特征、基因复制、系统进化和表达特征。  结果  海岛棉中共鉴定出39个GbRLCK VI家族基因,经聚类分析将其分为A、B两组,其中A组22个,B组17个,均含有1个激酶结构域,分布于16条染色体,多数位于质膜。基因复制分析表明,该家族在进化过程中发生染色体片段复制事件;Ka/Ks分析显示,所有基因对Ka/Ks均小于1,表明GbRLCK VI家族基因在进化过程中可能经历了严格的纯化选择作用。转录组分析表明,GbRLCK VI家族基因在10个不同组织中的表达模式不同,11个基因在花器官中优势表达,9个基因在根茎叶中优势表达;逆境胁迫下的表达分析显示,8个基因在干旱、盐、黄萎病胁迫下优势表达,4个基因只在黄萎病胁迫下优势表达,说明GbRLCK VI基因能快速地参与抗逆反应,挑选4个基因GB_A12G0061GB_A11G2234GB_D01G2010GB_D03G0730进行qRT-PCR验证,表达分析结果显示,4个基因在干旱、盐或黄萎病菌胁迫下的表达趋势与转录组数据一致,表明它们参与了棉花对逆境胁迫(干旱、盐和黄萎病菌)的响应过程。  结论  明确了GbRLCK VI家族基因在基因组中的分布特征、结构特征以及系统进化特征,根据转录组数据初步揭示了该家族基因在棉花生长发育和抗逆胁迫中的功能。
  • 图  1  拟南芥、水稻与海岛棉RLCK VI家族基因系统进行分析

    红色方块为RLCK VI_A亚家族;绿色方块为RLCK VI_B亚家族;At:拟南芥,LOC_Os:水稻,GB:海岛棉。

    Figure  1.  Phylogenetic evolution of RLCK VI family genes in Arabidopsis thaliana, Oryza sativa, and G. barbadense

    Red square indicates RLCK VI_A subfamily group; green square, RLCK VI_B subfamily group; At: Arabidopsis thaliana; LOC_Os: Oryza sativa; GB: G. barbadense.

    图  2  海岛棉RLCK VI家族蛋白序列的保守基序和基因结构分析

    Figure  2.  Conserved motifs and structures of RLCK VI protein sequences in G. barbadense

    图  3  海岛棉RLCK VI基因全基因组复制分布

    Figure  3.  Distribution of GbRLCK VI whole genome duplication

    图  4  GbRLCK VI基因在海岛棉不同组织器官的表达分析

    Figure  4.  Expressions of GbRLCK VI in tissues and organs of G. barbadense

    图  5  GbRLCK VI基因在海岛棉不同逆境胁迫下聚类表达分析

    Figure  5.  Clustered GbRLCK_VI expressions under stresses

    图  6  GbRLCK VI家族基因在海岛棉不同逆境胁迫下qRT-PCR分析

    A~D:PEG处理;E~H:NaCl处理;I~L:黄萎病菌处理。

    Figure  6.  qRT-PCR of GbRLCK_VI under stresses

    A–D: PEG treatments; E–H: NaCl treatments; I–L: verticillium wilt pathogen treatments.

    表  1  荧光定量 PCR引物序列

    Table  1.   Sequences of primers for quantitative PCR

    基因名称
    Gene name
    基因序列(5′-3′)
    Primer sequence (5′-3′)
    GB_A11G2234-FAATGAAGAATGAGAAACAA
    GB_A11G2234-RGAGGTGAAAACTGAAGTAC
    GB_A12G0061-FAAACTGGACTCACCACAAC
    GB_A12G0061-RAGTACACCAAAGGCAAACA
    GB_D01G2010-FGCAATATGGGGACCAACTG
    GB_D01G2010-RAGAACAACACCGAAAGCGT
    GB_D03G0730-FCATAAACGAAATAGCTTGC
    GB_D03G0730-RCCTTGGTCTCATAGGAAAC
    GhUBQ7-FGAAGGCATTCCACCTGACCAAC
    GhUBQ7-RCTTGACCTTCTTCTTCTTGTGCTTG
    下载: 导出CSV

    表  2  GbRLCK VI亚族成员蛋白理化性质及亚细胞定位分析

    Table  2.   Physicochemical properties and subcellular localizations of proteins in GbRLCK VI subfamily members

    基因编号
    Gene ID
    分类
    Classification
    理论等电点
    pI
    相对分子质量
    Relative molecular
    mass/Da
    染色体
    Chromosome
    位置
    Location/bp
    开放阅读
    框长度
    ORF/bp
    氨基酸
    Amino
    acids/aa
    亚细胞定位
    Subcellular
    localization
    GB_A01G0260RLCK VI_A5.3062875.09A2206175~22102441683561细胞质 Cytoplasmic
    GB_A01G1081RLCK VI_B8.1883349.28A20600106~206034582214738胞外 Extracellular
    GB_A01G1914RLCK VI_B5.9775989.42A103561645~1035644862046682胞外 Extracellular
    GB_A02G1246RLCK VI_B6.9484611.20A63519857~635240242325775胞外 Extracellular
    GB_A02G1740RLCK VI_A5.9450565.48A97801526~978034171362454质膜 Plasma membrane
    GB_A03G0311RLCK VI_A5.9544313.24A3766673~37689941167389质膜 Plasma membrane
    GB_A05G3702RLCK VI_A8.5267781.48A84140713~841436101815605细胞质 Cytoplasmic
    GB_A08G1010RLCK VI_A9.0865230.47A33774846~337772431749583细胞质 Cytoplasmic
    GB_A09G2643RLCK VI_A5.658175.80A77782790~777860631554518细胞质 Cytoplasmic
    GB_A10G1115RLCK VI_A6.0154570.32A22829603~228321841470490质膜 Plasma membrane
    GB_A11G0540RLCK VI_A6.0350910.97A4885422~48877631362454质膜 Plasma membrane
    GB_A11G1251RLCK VI_A9.2547356.59A12738544~127403331269423质膜 Plasma membrane
    GB_A11G2234RLCK VI_A6.0952234.38A51930366~519328081395465质膜 Plasma membrane
    GB_A11G2998RLCK VI_A6.9854619.72A102734569~1027393751455485质膜 Plasma membrane
    GB_A11G3462RLCK VI_A8.3954509.86A111382556~1113868841455485细胞质 Cytoplasmic
    GB_A12G0061RLCK VI_A9.5444738.44A770437~7722121197399质膜 Plasma membrane
    GB_A12G0366RLCK VI_B5.5351025.69A6110842~61126041365455质膜 Plasma membrane
    GB_A12G0580RLCK VI_B8.9457833.28A12489405~124919041566522胞外 Extracellular
    GB_A12G0837RLCK VI_B6.2872794.02A35264457~352675521959653胞外 Extracellular
    GB_A12G1016RLCK VI_A6.0855330.70A58620348~586235571470490细胞质 Cytoplasmic
    GB_D01G0255RLCK VI_A5.6154753.77D2136137~21386681461487质膜 Plasma membrane
    GB_D01G1159RLCK VI_B8.6282638.79D16772231~167755942193731胞外 Extracellular
    GB_D01G2010RLCK VI_B5.8775966.19D54299320~543021612049683胞外 Extracellular
    GB_D03G0345RLCK VI_A5.9450468.36D3912795~39146841359453质膜 Plasma membrane
    GB_D03G0730RLCK VI_B6.5284629.22D19203868~192080892328776胞外 Extracellular
    GB_D03G1685RLCK VI_A5.8644338.23D49960463~499626481167389质膜 Plasma membrane
    GB_D04G0916RLCK VI_A8.8267857.57D17923478~179263921824608细胞质 Cytoplasmic
    GB_D09G2477RLCK VI_A5.5458118.73D52528068~525312901554518细胞质 Cytoplasmic
    GB_D10G1818RLCK VI_A6.158069.37D46511912~465144751569523细胞质 Cytoplasmic
    GB_D11G0554RLCK VI_A5.9651742.65D4472367~44747581386462质膜 Plasma membrane
    GB_D11G1285RLCK VI_A9.3750810.57D11385965~113877531347449细胞质 Cytoplasmic
    GB_D11G2293RLCK VI_A6.1752301.37D30637528~306399691395465质膜 Plasma membrane
    GB_D11G2991RLCK VI_A7.6754466.53D60438857~604436721455485质膜 Plasma membrane
    GB_D11G3433RLCK VI_A8.3954454.82D67010248~670145911455485细胞质 Cytoplasmic
    GB_D12G0064RLCK VI_A9.5144758.54D777708~7819021197399质膜 Plasma membrane
    GB_D12G0350RLCK VI_B5.5451097.86D4562988~45647411365455质膜 Plasma membrane
    GB_D12G0573RLCK VI_B9.0457727.16D9309237~93117331563521胞外 Extracellular
    GB_D12G0968RLCK VI_A5.7353551.68D20078236~200807551425475细胞质 Cytoplasmic
    GB_D12G0998RLCK VI_B6.6279099.37D16414879~164179752133711胞外 Extracellular
    下载: 导出CSV

    表  3  串联重复基因Ka/Ks计算

    Table  3.   Calculation of Ka/Ks for tandem repeat gene

    基因编号
    Gene ID
    基因编号
    Gene ID
    非同义替换
    Ka
    同义替换
    Ks
    非同义替换/同义替换
    Ka/Ks
    GB_A01G1914GB_A12G03660.1043121140.452631370.230457101
    GB_A01G0260GB_D01G02550.0289432250.0463229270.624814254
    GB_A01G1081GB_D01G11590.0209772450.0544456660.385287692
    GB_A01G1914GB_D01G20100.0134067520.028454990.471156428
    GB_A01G1914GB_D12G03500.1092776370.4737823210.230649461
    GB_A02G1740GB_D03G03450.0056912770.030538570.186363574
    GB_A02G1246GB_D03G07300.0067765170.0375430270.18050001
    GB_A02G1740GB_D11G22930.1975540851.0400105140.18995393
    GB_A05G3702GB_D04G09160.0233085040.0567705110.410574135
    GB_A09G2643GB_D09G24770.0125517190.0503768680.249156396
    GB_A10G1115GB_D09G24770.2507065040.7441118030.336920478
    GB_A10G1115GB_D10G18180.0106882240.027009670.395718402
    GB_A11G1251GB_A12G00610.1030865680.888366220.116040621
    GB_A11G0540GB_D11G05540.013832970.0353501610.391312788
    GB_A11G1251GB_D11G12850.0123565520.0389468030.31726743
    GB_A11G2998GB_D11G29910.013975910.0540496220.258575533
    GB_A11G3462GB_D11G34330.0134552870.0697808820.192821966
    GB_A11G0540GB_D11G22930.2391914470.6798021630.351854496
    GB_A11G2234GB_D11G22930.0092701060.043213280.214519851
    GB_A11G1251GB_D12G00640.1086973990.8189743040.132723821
    GB_A12G0366GB_D01G20100.1101348990.4973727120.221433336
    GB_A12G0061GB_D11G12850.1024736060.893843920.114643735
    GB_A12G0061GB_D12G00640.0175832230.052455830.335200547
    GB_A12G0580GB_D12G05730.0066834190.0457284470.146154523
    GB_A12G0366GB_D12G03500.012329370.0269767770.457036417
    GB_A12G1016GB_D12G09680.0146023320.0655617830.222726282
    GB_D01G2010GB_D12G03500.1162400860.5130967430.22654614
    GB_D03G0345GB_D11G22930.195157331.0622308920.18372402
    GB_D09G2477GB_D10G18180.2540535180.744675190.341160175
    GB_D11G0554GB_D11G22930.2103674090.6607278120.318387398
    GB_D11G1285GB_D12G00640.1068235830.8239592170.129646687
    下载: 导出CSV
  • [1] 易黎. 拟南芥及甘蓝型油菜RBK2蛋白及相关蛋白家族生物信息学分析[D]. 郑州: 郑州大学, 2016.

    YI L. Bioinformatics analysis of RBK2 and its related protein family in Arabidopsis thaliana and Braasica napus[D]. Zhengzhou: Zhengzhou University, 2016. (in Chinese)
    [2] 饶绍飞. 拟南芥类受体胞质激酶第七亚家族成员在先天免疫中的功能分析[D]. 北京: 中国科学院大学, 2018.

    RAO S F. Functional analysis of members of the seventh subfamily of Arabidopsis receptor cytoplasmic kinases in innate immunity[D]. Beijing: University of Chinese Academy of Sciences, 2018. (inChinese)
    [3] VIJ S, GIRI J, DANSANA P K, et al. The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: Organization, phylogenetic relationship, and expression during development and stress [J]. Molecular Plant, 2008, 1(5): 732−750. doi: 10.1093/mp/ssn047
    [4] REINER T, HOEFLE C, HUESMANN C, et al. The Arabidopsis ROP-activated receptor-like cytoplasmic kinase RLCK VI_A3 is involved in control of basal resistance to powdery mildew and trichome branching [J]. Plant Cell Reports, 2015, 34(3): 457−468. doi: 10.1007/s00299-014-1725-1
    [5] 马银花, 李萍芳, 董文静, 等. 水稻抗性蛋白OsRRK1抗褐飞虱机理分析 [J]. 中国水稻科学, 2020, 34(6):512−519. doi: 10.16819/j.1001-7216.2020.0406

    MA Y H, LI P F, DONG W J, et al. Mechanism analysis of rice resistance protein OsRRK1 against the brown planthopper [J]. Chinese Journal of Rice Science, 2020, 34(6): 512−519.(in Chinese) doi: 10.16819/j.1001-7216.2020.0406
    [6] 何含杰, 张党权, 唐丽, 等. 植物RLCK的生物学功能与信号途径研究进展 [J]. 植物生理学报, 2014, 50(7):885−890. doi: 10.13592/j.cnki.ppj.2014.0154

    HE H J, ZHANG D Q, TANG L, et al. Recent advance on biological function and signal pathway of receptor-like cytoplasmic kinase in plants [J]. Plant Physiology Journal, 2014, 50(7): 885−890.(in Chinese) doi: 10.13592/j.cnki.ppj.2014.0154
    [7] COSTA A T, BRAVO J P, KRAUSE-SAKATE R, et al. The receptor-like kinase SlSOBIR1 is differentially modulated by virus infection but its overexpression in tobacco has no significant impact on virus accumulation [J]. Plant Cell Reports, 2016, 35(1): 65−75. doi: 10.1007/s00299-015-1868-8
    [8] JURCA M E, BOTTKA S, FEHÉR A. Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI) [J]. Plant Cell Reports, 2008, 27(4): 739−748. doi: 10.1007/s00299-007-0494-5
    [9] JUNG K H, CAO P J, SEO Y S, et al. The Rice Kinase Phylogenomics Database: A guide for systematic analysis of the rice kinase super-family [J]. Trends in Plant Science, 2010, 15(11): 595−599. doi: 10.1016/j.tplants.2010.08.004
    [10] LEE L Y C, HOU X L, FANG L, et al. STUNTED mediates the control of cell proliferation by GA in Arabidopsis [J]. Development, 2012, 139(9): 1568−1576. doi: 10.1242/dev.079426
    [11] VALKAI I, KÉNESI E, DOMONKOS I, et al. The Arabidopsis RLCK VI_A2 kinase controls seedling and plant growth in parallel with gibberellin [J]. International Journal of Molecular Sciences, 2020, 21(19): 7266. doi: 10.3390/ijms21197266
    [12] ENDERS T A, FRICK E M, STRADER L C. An Arabidopsis kinase cascade influences auxin-responsive cell expansion [J]. The Plant Journal, 2017, 92(1): 68−81. doi: 10.1111/tpj.13635
    [13] LAL N K, FISHER A J, DINESH-KUMAR S P. Arabidopsis receptor-like cytoplasmic kinase BIK1: Purification, crystallization and X-ray diffraction analysis[J]. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72(Pt 10): 738-742.
    [14] LU D P, WU S J, GAO X Q, et al. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1): 496−501. doi: 10.1073/pnas.0909705107
    [15] HUESMANN C, REINER T, HOEFLE C, et al. Barley ROP binding kinase1 is involved in microtubule organization and in basal penetration resistance to the barley powdery mildew fungus [J]. Plant Physiology, 2012, 159(1): 311−320. doi: 10.1104/pp.111.191940
    [16] 马银花, 莫凯琴, 刘璐, 等. 过量表达OsRRK1对水稻叶片发育的影响 [J]. 中国农业科学, 2021, 54(5):877−886. doi: 10.3864/j.issn.0578-1752.2021.05.001

    MA Y H, MO K Q, LIU L, et al. Effect of overexpression of OsRRK1 gene on rice leaf development [J]. Scientia Agricultura Sinica, 2021, 54(5): 877−886.(in Chinese) doi: 10.3864/j.issn.0578-1752.2021.05.001
    [17] 田超, 王冉, 彭艳, 等. 植物抗逆胁迫相关蛋白激酶的研究进展 [J]. 安徽农业科学, 2015, 43(20):4−6,37. doi: 10.3969/j.issn.0517-6611.2015.20.002

    TIAN C, WANG R, PENG Y, et al. Research advance of protein kinase in plant resistant to adversity stress [J]. Journal of Anhui Agricultural Sciences, 2015, 43(20): 4−6,37.(in Chinese) doi: 10.3969/j.issn.0517-6611.2015.20.002
    [18] 赵曾强, 孙国清, 张国丽, 等. 海岛棉GbRLCK10基因克隆及表达分析 [J]. 西北植物学报, 2017, 37(11):2130−2138. doi: 10.7606/j.issn.1000-4025.2017.11.2130

    ZHAO Z Q, SUN G Q, ZHANG G L, et al. Cloning and expression analysis of the GbRLCK10 gene in Gossypium barbadense L. [J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(11): 2130−2138.(in Chinese) doi: 10.7606/j.issn.1000-4025.2017.11.2130
    [19] RAMEGOWDA V, BASU S, KRISHNAN A, et al. Rice growth under drought kinase is required for drought tolerance and grain yield under normal and drought stress conditions [J]. Plant Physiology, 2014, 166(3): 1634−1645. doi: 10.1104/pp.114.248203
    [20] SUN X L, SUN M Z, LUO X, et al. A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses [J]. Planta, 2013, 237(6): 1527−1545. doi: 10.1007/s00425-013-1864-6
    [21] DORJGOTOV D, JURCA M E, FODOR-DUNAI C, et al. Plant Rho-type (Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro [J]. FEBS Letters, 2009, 583(7): 1175−1182. doi: 10.1016/j.febslet.2009.02.047
    [22] AGRAWAL G K, IWAHASHI H, RAKWAL R. Small GTPase ‘Rop’: Molecular switch for plant defense responses [J]. FEBS Letters, 2003, 546(2/3): 173−180.
    [23] HU Y, CHEN J D, FANG L, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton [J]. Nature Genetics, 2019, 51(4): 739−748. doi: 10.1038/s41588-019-0371-5
    [24] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [25] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Molecular Biology and Evolution, 2016, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    [26] VERA ALVAREZ R, PONGOR L S, MARIÑO-RAMÍREZ L, et al. TPMCalculator: One-step software to quantify mRNA abundance of genomic features [J]. Bioinformatics, 2019, 35(11): 1960−1962. doi: 10.1093/bioinformatics/bty896
    [27] SHABAN M, MIAO Y H, ULLAH A, et al. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae [J]. Plant Physiology and Biochemistry, 2018, 125: 193−204. doi: 10.1016/j.plaphy.2018.02.011
    [28] WANG M J, TU L L, YUAN D J, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense [J]. Nature Genetics, 2019, 51(2): 224−229. doi: 10.1038/s41588-018-0282-x
    [29] 庞丹丹, 刘玉飞, 田易萍, 等. 茶树ZF-HD转录因子基因家族的鉴定及表达分析 [J]. 南方农业学报, 2021, 52(3):632−640. doi: 10.3969/j.issn.2095-1191.2021.03.011

    PANG D D, LIU Y F, TIAN Y P, et al. Identification and expression analysis of ZF-HD transcription factor gene family in Camellia sinensis [J]. Journal of Southern Agriculture, 2021, 52(3): 632−640.(in Chinese) doi: 10.3969/j.issn.2095-1191.2021.03.011
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  127
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 修回日期:  2022-11-27
  • 网络出版日期:  2023-06-02
  • 刊出日期:  2023-06-28

目录

    /

    返回文章
    返回