• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辣椒海藻糖-6-磷酸合酶基因CaTPS9的克隆及表达分析

黄立娟 魏敏 苟秉调 段盼盼 郭娜纳 魏兵强

黄立娟,魏敏,苟秉调,等. 辣椒海藻糖-6-磷酸合酶基因CaTPS9的克隆及表达分析 [J]. 福建农业学报,2023,38(7):800−808 doi: 10.19303/j.issn.1008-0384.2023.07.005
引用本文: 黄立娟,魏敏,苟秉调,等. 辣椒海藻糖-6-磷酸合酶基因CaTPS9的克隆及表达分析 [J]. 福建农业学报,2023,38(7):800−808 doi: 10.19303/j.issn.1008-0384.2023.07.005
HUANG L J, WEI M, GOU B D, et al. Bioinformatics and Expression of CaTPS9 in Chili Peppers [J]. Fujian Journal of Agricultural Sciences,2023,38(7):800−808 doi: 10.19303/j.issn.1008-0384.2023.07.005
Citation: HUANG L J, WEI M, GOU B D, et al. Bioinformatics and Expression of CaTPS9 in Chili Peppers [J]. Fujian Journal of Agricultural Sciences,2023,38(7):800−808 doi: 10.19303/j.issn.1008-0384.2023.07.005

辣椒海藻糖-6-磷酸合酶基因CaTPS9的克隆及表达分析

doi: 10.19303/j.issn.1008-0384.2023.07.005
基金项目: 国家自然科学基金项目(31760572);甘肃省重点研发计划项目(21YF5NA091);兰州市人才创新创业项目(2021-RC-65);甘肃农业大学青年导师扶持基金项目(GAU-QDFC-2020-07)
详细信息
    作者简介:

    黄立娟(2000 —),女,硕士研究生,主要从事蔬菜遗传育种与分子生物学研究,E-mail:hk1234561018@163.com

    通讯作者:

    魏兵强(1980 —),男,博士,教授,主要从事蔬菜遗传与分子育种研究,E-mail:bqwei@gsau.edu.cn

  • 中图分类号: S641.3

Bioinformatics and Expression of CaTPS9 in Chili Peppers

  • 摘要:   目的  明确辣椒中海藻糖-6-磷酸合酶(TPS)基因CaTPS9的表达特性和生物学功能,进一步了解TPS对辣椒生长中调控非生物胁迫的作用。  方法  以辣椒品种强丰101为试验材料,克隆CaTPS9基因,并对辣椒CaTPS9的理化性质、蛋白结构、顺式作用元件、系统进化树等进行分析;通过qRT-PCR分析CaTPS9基因在不同组织(商品果果肉、幼果果肉、成熟果果肉、商品果胎座、幼果胎座、成熟果胎座、叶、根、茎、花)和胁迫处理(低温和植物生长调节剂处理)中的表达模式。  结果  CaTPS9基因CDS序列全长2604 bp,编码867个氨基酸。CaTPS9蛋白包含Glyco_transf_20和Trehalose_PPase两个保守结构域,分子质量为97.60 kDa,不稳定指数为44.27,理论等电点为5.63,亚细胞定位预测CaTPS9蛋白位于细胞质中。生物信息学分析表明,CaTPS9蛋白属于亲水性蛋白,且不存在跨膜结构和信号肽序列,蛋白结构主要由α-螺旋和无规则卷曲组成。系统进化关系分析表明,CaTPS9与烟草(Nicotiana tabacum L.)、番茄(Solanum lycopersicum L.)和马铃薯(Solanum tuberosum L.)中的同源基因亲缘关系较近。启动子顺式作用元件分析表明,CaTPS9启动子区域含有与激素、胁迫及植物生长发育相关的顺式作用元件。此外,CaTPS9在叶片中表达量最高,在商品果胎座中表达量最低。在水杨酸(Salicylic acid,SA) 处理12 h后CaTPS9基因的表达量被显著提升,而低温、吲哚乙酸(3-indoleacetic acid,IAA)、脱落酸(Abscisic acid,ABA)、赤霉素(Gibberellin acid,GA3)和茉莉酸甲酯(Methyl jasmonate,MeJA)处理能够显著抑制CaTPS9基因表达量。  结论  CaTPS9基因可能通过海藻糖生物合成途径响应逆境胁迫。
  • 图  1  CaTPS9基因扩增产物

    M:GL DNA Marker 5000,1~2:PCR产物。

    Figure  1.  Amplification products of CaTPS9

    M: DNA marker 5000; 1-2: amplified cDNA product of CaTPS9.

    图  2  CaTPS9蛋白疏水性和亲水性预测

    Figure  2.  Predicted hydrophobicity and hydrophilicity of CaTPS9 protein

    图  3  CaTPS9蛋白磷酸化位点预测

    Figure  3.  Predicted phosphorylation sites on CaTPS9 protein

    图  4  CaTPS9蛋白的二级结构预测

    蓝色区域表示α-螺旋;紫色区域表示无规则卷曲;红色区域表示延伸链;绿色区域表示β-转角。

    Figure  4.  Predicted secondary structure of CaTPS9 protein

    Blue region: alpha helix; purple color: random coil; red shade: extended strand; green area:beta turn.

    图  5  CaTPS9蛋白的三级结构预测

    Figure  5.  Predicted tertiary structure of CaTPS9 protein

    图  6  CaTPS9系统进化关系分析

    Figure  6.  Phylogenetic relationship of CaTPS9

    图  7  CaTPS9基因在辣椒不同组织的表达模式

    PECP:商品果果肉;YPE:幼果果肉;RPE:成熟果果肉;PLCP:商品果胎座;YPL:幼果胎座;RPL:成熟果胎座;L:叶;R:根;S:茎;F:花;不同小写字母表示CaTPS9基因表达量在辣椒不同组织间差异显著(P<0.05)。图8同。

    Figure  7.  Expressions of CaTPS9 in different tissues of pepper plant

    PECP: pericarp of commerical pepper; YPE: young pericarp; RPE: ripened pericarp; PLCP: placenta of commercial pepper; YPL: young placenta; RPL: ripened placenta ; L: leaf; R: root; S: stem; F: flower; those with different lowercase letters significantly different between different tissues of pepper at P<0.05. Same for Fig. 8.

    图  8  辣椒CaTPS9基因在不同胁迫条件下的表达模式

    Figure  8.  Expressions of CaTPS9 under abiotic stresses

    表  1  CaTPS9基因引物信息及功能

    Table  1.   Information and function of CaTPS9 primer

    引物名称
    Primer name
    引物序列
    Primer sequence(5′-3′)
    用途
    Purpose
    CaTPS9-FATGGCATCAAGATCTAGTGCA基因扩增
    Gene amplification
    CaTPS9-RTTACCCACTCAAATTAACAGATGAG
    qCaTPS9-FGCATTGGAGATGACAGGTCGGATG荧光定量PCR
    qRT-PCR
    qCaTPS9-RACTTGGCTTTGCTTGGCTTTTGC
    qActin-FAGAGATTCCGTTGCCCAGAGGTC内参基因
    Reference gene
    qActin-RAGCCACCACTGAGCACAATGTTAC
    下载: 导出CSV

    表  2  CaTPS9启动子顺式作用元件预测分析

    Table  2.   Putative cis−element analysis on promoter regions of CaTPS9

    分类
    Classification
    元件名称
    Element name
    序列
    Sequence
    功能预测
    Function prediction
    激素响应元件
    Hormone response element
    脱落酸响应元件
    ABRE
    ACGTG 参与响应脱落酸的顺式作用元件
    cis-acting element involved in abscisic acid responsiveness
    生长素响应元件
    AuxRR-core
    GGTCCAT 参与响应生长素的顺式作用元件
    cis-acting regulatory element involved in auxin responsiveness
    赤霉素响应元件
    TATC-box
    TATCCCA 参与响应赤霉素的顺式作用元件
    cis-acting element involved in gibberellin-responsiveness
    水杨酸响应元件
    TCA-element
    CCATCTTTTT 参与响应水杨酸的顺式作用元件
    cis-acting element involved in salicylic acid responsiveness
    胁迫响应元件
    Stress response element
    干旱诱导元件
    MBS
    CAACTG 参与干旱诱导的MYB结合位点
    MYB binding site involved in drought-inducibility
    厌氧诱导元件
    ARE
    AAACCA 参与厌氧诱导的顺式作用元件
    cis-acting regulatory element essential for the anaerobic induction
    植物生长发育元件
    Plant growth and development elements
    玉米蛋白代谢调节元件
    O2-site
    GATGA(C/T)
    (A/G)TG(A/G)
    参与玉米蛋白代谢调节的顺式作用元件
    cis-acting regulatory element involved in zein metabolism regulation
    种子特异调控元件
    RY-element
    CATGCATG 参与种子特异调控的顺式作用元件
    cis-acting regulatory element involved in seed-specific regulation
    分生组织表达相关元件
    CAT-box
    GCCACT 与分生组织表达相关的顺式作用元件
    cis-acting regulatory element related to meristem expression
    下载: 导出CSV
  • [1] 王立浩, 马艳青, 张宝玺. 我国辣椒品种市场需求与育种趋势 [J]. 中国蔬菜, 2019(8):1−4. doi: 10.19928/j.cnki.1000-6346.2019.08.001

    WANG L H, MA Y Q, ZHANG B X. Market demand and breeding trend of pepper varieties in China [J]. China Vegetables, 2019(8): 1−4.(in Chinese) doi: 10.19928/j.cnki.1000-6346.2019.08.001
    [2] ZHU F M, LI M Y, SUN M L, et al. Plant hormone signals regulate trehalose accumulation against osmotic stress in watermelon cells [J]. Protoplasma, 2022, 259(5): 1351−1369. doi: 10.1007/s00709-021-01715-0
    [3] GARG A K, KIM J K, OWENS T G, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(25): 15898−15903.
    [4] SINGER M A, LINDQUIST S. Multiple effects of trehalose on protein folding in vitro and in vivo [J]. Molecular Cell, 1998, 1(5): 639−648. doi: 10.1016/S1097-2765(00)80064-7
    [5] CHOWDARY T K, RAMAN B, RAMAKRISHNA T, et al. Interaction of mammalian Hsp22 with lipid membranes [J]. The Biochemical Journal, 2007, 401(2): 437−445. doi: 10.1042/BJ20061046
    [6] GARCIA A B, ENGLER J, IYER S, et al. Effects of osmoprotectants upon NaCl stress in rice [J]. Plant Physiology, 1997, 115(1): 159−169. doi: 10.1104/pp.115.1.159
    [7] TIAN L F, XIE Z J, LU C Q, et al. The trehalose-6-phosphate synthase TPS5 negatively regulates ABA signaling in Arabidopsis thaliana [J]. Plant Cell Reports, 2019, 38(8): 869−882. doi: 10.1007/s00299-019-02408-y
    [8] 周斌辉. 巴西橡胶树6-磷酸海藻糖合成酶家族基因的克隆、表达分析及其功能验证[D]. 海口: 海南大学, 2013.

    ZHOU B H. Cloning and functional characterization of the trehalose-6-phosphate synthase gene family in Hevea brasiliensis[D]. Haikou: Hainan University, 2013. (in Chinese)
    [9] LI H W, ZANG B S, DENG X W, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice [J]. Planta, 2011, 234(5): 1007−1018. doi: 10.1007/s00425-011-1458-0
    [10] WAHL V, PONNU J, SCHLERETH A, et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana [J]. Science, 2013, 339(6120): 704−707. doi: 10.1126/science.1230406
    [11] VANDESTEENE L, RAMON M, LE ROY K, et al. A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis [J]. Molecular Plant, 2010, 3(2): 406−419. doi: 10.1093/mp/ssp114
    [12] ZANG B S, LI H W, LI W J, et al. Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice [J]. Plant Molecular Biology, 2011, 76(6): 507−522. doi: 10.1007/s11103-011-9781-1
    [13] 杨仕梅, 张天缘, 丘日光, 等. 番茄TPS基因家族鉴定与分析 [J]. 分子植物育种, 2019, 17(16):5215−5223.

    YANG S M, ZHANG T Y, QIU R G, et al. Identification and analysis of TPS gene family in tomato [J]. Molecular Plant Breeding, 2019, 17(16): 5215−5223.(in Chinese)
    [14] 魏兵强, 王兰兰, 张茹, 等. 辣椒TPS家族成员的鉴定与CaTPS1的表达分析 [J]. 园艺学报, 2016, 43(8):1504−1512.

    WEI B Q, WANG L L, ZHANG R, et al. Identification of CaTPS gene family and expression analysis of CaTPS1 in hot pepper [J]. Acta Horticulturae Sinica, 2016, 43(8): 1504−1512.(in Chinese)
    [15] 陈天池, 吴月燕, 沈乐意, 等. 葡萄TPS基因家族的鉴定与表达分析[J/OL]. 分子植物育种, 2021: 1-13. (2021-07-22). https://kns.cnki.net/kcms/detail/46.1068.S.20210722.1430.018.html.

    CHEN T C, WU Y Y, SHEN L Y, et al. Identification and expression analysis of TPS genes family in grape[J/OL]. Molecular Plant Breeding, 2021: 1-13. (2021-07-22). https://kns.cnki.net/kcms/detail/46.1068.S.20210722.1430.018.html.(in Chinese)
    [16] 杜丽璞, 徐惠君, 叶兴国, 等. 小麦转TPS基因植株的获得及其初步功能鉴定 [J]. 麦类作物学报, 2007, 27(3):369−373.

    DU L P, XU H J, YE X G, et al. Transgenic wheat plants with trehalose-6-phosphate synthase (TPS) gene and identification of their function [J]. Journal of Triticeae Crops, 2007, 27(3): 369−373.(in Chinese)
    [17] CORTINA C, CULIÁÑEZ-MACIÀ F A. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis [J]. Plant Science, 2005, 169(1): 75−82. doi: 10.1016/j.plantsci.2005.02.026
    [18] 赵淑芳, 苟秉调, 魏敏, 等. 辣椒CaTPS8基因克隆与表达分析 [J]. 西北农业学报, 2022, 31(12):1568−1578.

    ZHAO S F, GOU B D, WEI M, et al. Cloning and expression analysis of CaTPS8 gene in Capsicum annuum [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(12): 1568−1578.(in Chinese)
    [19] LU S N, WANG J Y, CHITSAZ F, et al. CDD/SPARCLE: The conserved domain database in 2020 [J]. Nucleic Acids Research, 2020, 48(D1): D265−D268. doi: 10.1093/nar/gkz991
    [20] WILKINS M R, GASTEIGER E, BAIROCH A, et al. Protein identification and analysis tools in the ExPASy server [J]. Methods in Molecular Biology, 1999, 112: 531−552.
    [21] CHOU K C, SHEN H B. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0 [J]. PLoS One, 2010, 5(4): e9931. doi: 10.1371/journal.pone.0009931
    [22] JOHNSON M, ZARETSKAYA I, RAYTSELIS Y, et al. NCBI BLAST: A better web interface [J]. Nucleic Acids Research, 2008, 36(S2): W5−W9.
    [23] LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and clustal X version 2.0 [J]. Bioinformatics, 2007, 23(21): 2947−2948. doi: 10.1093/bioinformatics/btm404
    [24] MÖLLER S, CRONING M D R, APWEILER R. Evaluation of methods for the prediction of membrane spanning regions [J]. Bioinformatics, 2001, 17(7): 646−653. doi: 10.1093/bioinformatics/17.7.646
    [25] ALMAGRO A J J, TSIRIGOS K D, SØNDERBY C K, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks [J]. Nature Biotechnology, 2019, 37(4): 420−423. doi: 10.1038/s41587-019-0036-z
    [26] BLOM N, GAMMELTOFT S, BRUNAK S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites 1 [J]. Journal of Molecular Biology, 1999, 294(5): 1351−1362. doi: 10.1006/jmbi.1999.3310
    [27] GEOURJON C, DELÉAGE G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments [J]. Bioinformatics, 1995, 11(6): 681−684. doi: 10.1093/bioinformatics/11.6.681
    [28] KIEFER F, ARNOLD K, KÜNZLI M, et al. The SWISS-MODEL Repository and associated resources[J]. Nucleic Acids Research, 2009, 37(Database issue): D387-D392.
    [29] KUMAR S, STECHER G, LI M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms [J]. Molecular Biology and Evolution, 2018, 35(6): 1547−1549. doi: 10.1093/molbev/msy096
    [30] ROMBAUTS S, DÉHAIS P, VAN MONTAGU M, et al. PlantCARE, a plant cis-acting regulatory element database [J]. Nucleic Acids Research, 1999, 27(1): 295−296. doi: 10.1093/nar/27.1.295
    [31] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [32] JIANG S Y, JIN J J, SAROJAM R, et al. A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns [J]. Genome Biology and Evolution, 2019, 11(8): 2078−2098. doi: 10.1093/gbe/evz142
    [33] 于欢. 甘薯海藻糖-6-磷酸合成酶基因IbTPS1克隆与功能鉴定[D]. 太谷: 山西农业大学, 2019.

    YU H. Cloning and functional identification of trehalose-6-phosphate synthase gene IbTPS1 from Ipomoea batatas(L. ) lam[D]. Taigu: Shanxi Agricultural University, 2019. (in Chinese)
    [34] 丁泽红, 付莉莉, 铁韦韦, 等. 木薯MeTPS9基因克隆及表达特性分析 [J]. 生物技术通报, 2017, 33(11):84−91. doi: 10.13560/j.cnki.biotech.bull.1985.2017-0416

    DING Z H, FU L L, TIE W W, et al. Clone and expression characteristics of MeTPS9 gene in cassava [J]. Biotechnology Bulletin, 2017, 33(11): 84−91.(in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2017-0416
    [35] DING X D, WANG D, XIAO J L. Cloning of gs TPS9 gene from Glycine soja and study on its responses to stresses [J]. Journal of Northeast Agricultural University (English Edition), 2022, 29(1): 59−68.
    [36] KHATUN K, ROBIN A H K, PARK J I, et al. Molecular characterization and expression profiling of tomato GRF transcription factor family genes in response to abiotic stresses and phytohormones [J]. International Journal of Molecular Sciences, 2017, 18(5): 1056. doi: 10.3390/ijms18051056
    [37] DOSSA K, DIOUF D, CISSÉ N. Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response [J]. Frontiers in Plant Science, 2016, 7: 1522.
    [38] LIN T Y, ZHOU R, BI B, et al. Analysis of a radiation-induced dwarf mutant of a warm-season turf grass reveals potential mechanisms involved in the dwarfing mutant [J]. Scientific Reports, 2020, 10(1): 18913. doi: 10.1038/s41598-020-75421-x
    [39] SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance [J]. Journal of Experimental Botany, 2007, 58(2): 221−227.
    [40] SUGANO S, MAEDA S, HAYASHI N, et al. Tyrosine phosphorylation of a receptor-like cytoplasmic kinase, BSR1, plays a crucial role in resistance to multiple pathogens in rice [J]. The Plant Journal:for Cell and Molecular Biology, 2018, 96(6): 1137−1147. doi: 10.1111/tpj.14093
    [41] XU Y C, WANG Y J, MATTSON N, et al. Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: Evolution and differential expression during development and stress [J]. BMC Genomics, 2017, 18(1): 926. doi: 10.1186/s12864-017-4298-x
    [42] ZHOU M L, ZHANG Q, SUN Z M, et al. Trehalose metabolism-related genes in maize [J]. Journal of Plant Growth Regulation, 2014, 33(2): 256−271. doi: 10.1007/s00344-013-9368-y
    [43] 龙娅丽, 徐子健, 朱白婢, 等. 茉莉酸甲酯诱导西瓜ClTPS1基因的表达特性及其生物学信息分析 [J]. 分子植物育种, 2016, 14(12):3299−3307.

    LONG Y L, XU Z J, ZHU B B, et al. Sequence analysis of ClTPS1 gene in watermelon and its expression characteristic after treated with MeJA [J]. Molecular Plant Breeding, 2016, 14(12): 3299−3307.(in Chinese)
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  150
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-04-10
  • 网络出版日期:  2023-08-16
  • 刊出日期:  2023-07-28

目录

    /

    返回文章
    返回