• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转录组测序分析天冬氨酸和谷氨酸对广叶绣球菌生长的影响

刘晓瑜 肖冬来 马璐 杨驰 林辉 江晓凌

刘晓瑜,肖冬来,马璐,等. 转录组测序分析天冬氨酸和谷氨酸对广叶绣球菌生长的影响 [J]. 福建农业学报,2023,38(7):833−841 doi: 10.19303/j.issn.1008-0384.2023.07.009
引用本文: 刘晓瑜,肖冬来,马璐,等. 转录组测序分析天冬氨酸和谷氨酸对广叶绣球菌生长的影响 [J]. 福建农业学报,2023,38(7):833−841 doi: 10.19303/j.issn.1008-0384.2023.07.009
LIU X Y, XIAO D L, MA L, et al. Transcriptome Analysis on Effect of Glutamic and Aspartic Acids on Growth of Sparassis latifolia [J]. Fujian Journal of Agricultural Sciences,2023,38(7):833−841 doi: 10.19303/j.issn.1008-0384.2023.07.009
Citation: LIU X Y, XIAO D L, MA L, et al. Transcriptome Analysis on Effect of Glutamic and Aspartic Acids on Growth of Sparassis latifolia [J]. Fujian Journal of Agricultural Sciences,2023,38(7):833−841 doi: 10.19303/j.issn.1008-0384.2023.07.009

转录组测序分析天冬氨酸和谷氨酸对广叶绣球菌生长的影响

doi: 10.19303/j.issn.1008-0384.2023.07.009
基金项目: 福建省科技计划公益类专项(2020R1035005);福建省自然科学基金(2021J01505);福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021007)
详细信息
    作者简介:

    刘晓瑜(1991 —),女,硕士,研究实习员,主要从事食用菌栽培生理研究,E-mail:liu.xiaoyu1991@163.com

    通讯作者:

    肖冬来(1981 —),男,博士,副研究员,主要从事食用菌栽培生理研究,E-mail:xdljiangsu@163.com

  • 中图分类号: S646

Transcriptome Analysis on Effect of Glutamic and Aspartic Acids on Growth of Sparassis latifolia

  • 摘要:   目的  通过转录组测序分析添加不同氮源培养后广叶绣球菌基因差异表达情况,旨在探究氨基酸调节基质降解的分子机理,为其高效生产提供理论依据。  方法  以硫酸铵、鱼粉蛋白胨、天冬氨酸和谷氨酸为氮源,测定菌丝生长速度并利用转录组测序技术对不同氮源诱导下广叶绣球菌进行基因差异表达分析。  结果  天冬氨酸和谷氨酸相对于硫酸铵、鱼粉蛋白胨可显著促进菌丝生长(P<0.01);GO功能富集分析显示差异基因主要富集在氧化还原酶活性、铁离子跨膜转运蛋白活性和铁离子的还原和转运同化等;KEGG通路富集分析显示,富集度较高的通路主要有色氨酸代谢、花生四烯酸代谢和氮代谢等。差异基因中溶血素蛋白ostreolysin A6、GroES类似蛋白和6-甲基水杨酸脱羧酶等基因在天冬氨酸或谷氨酸诱导下表达量变化倍数较大(P<0.01)。  结论  天冬氨酸和谷氨酸可能通过促进绣球菌氧化还原酶活性及铁离子代谢过程,提高其基质利用能力。研究结果为进一步研究广叶绣球菌木质纤维素降解机制及栽培生理提供理论依据。
  • 图  1  不同氮源对广叶绣球菌生长的影响

    Figure  1.  Effects of different nitrogen sources on growth of S. latifolia

    图  2  差异表达基因统计图(A)和韦恩图(B)

    Figure  2.  Statistical histogram (A) and Venn diagram (B) of DEGs

    图  3  差异基因GO(A)和KEGG(B)富集分析

    Figure  3.  GO (A) and KEGG (B) enrichment analyses on DEGs

    图  4  差异显著基因热图聚类分析

    热图上数字为基因表达量FPKM值,下同。

    Figure  4.  Heat map clustering on significantly differentiated genes

    Datas are FPKM values. Same for below.

    图  5  氧化还原酶基因热图聚类分析

    Figure  5.  Heat map clustering on oxidoreductase genes

    图  6  纤维素和半纤维素降解相关基因热图聚类分析

    Figure  6.  Heat map clustering on cellulose- and hemicellulose-degrading genes

    图  7  铁离子转运和还原相关基因热图聚类分析

    Figure  7.  Heat map clustering on iron transport and reduction genes

  • [1] KIMURA T. Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa [J]. BioMed Research International, 2013, 2013: 982317.
    [2] SHARMA N, TAPWAL A, VERMA R, et al. Medicinal, nutritional, and nutraceutical potential of Sparassis crispa s. lat. : A review [J]. IMA Fungus, 2022, 13(1): 8. doi: 10.1186/s43008-022-00095-1
    [3] WEI X, CHENG F E, LIU J Y, et al. Sparassis latifolia polysaccharides inhibit colon cancer in mice by modulating gut microbiota and metabolism [J]. International Journal of Biological Macromolecules, 2023, 232: 123299. doi: 10.1016/j.ijbiomac.2023.123299
    [4] 肖冬来, 马璐, 杨驰, 等. 不同碳源条件下广叶绣球菌转录组分析 [J]. 微生物学通报, 2019, 46(7):1654−1661.

    XIAO D L, MA L, YANG C, et al. Transcriptome analysis of Sparassis latifolia cultivated with different carbon sources [J]. Microbiology China, 2019, 46(7): 1654−1661.(in Chinese)
    [5] 马璐, 杨驰, 肖冬来, 等. 基质碳氮比对广叶绣球菌生长发育的影响 [J]. 菌物学报, 2021, 40(12):3196−3213.

    MA L, YANG C, XIAO D L, et al. Effects of different substrate carbon to nitrogen ratio(C/N) on the growth and development of Sparassis latifolia [J]. Mycosystema, 2021, 40(12): 3196−3213.(in Chinese)
    [6] 安琪, 吴雪君, 吴冰, 等. 不同碳源和氮源对金针菇降解木质纤维素酶活性的影响 [J]. 菌物学报, 2015, 34(4):761−771.

    AN Q, WU X J, WU B, et al. Effects of carbon and nitrogen sources on lignocellulose decomposition enzyme activities in Flammulina velutipes [J]. Mycosystema, 2015, 34(4): 761−771.(in Chinese)
    [7] 刘秀明, 陈强, 邬向丽, 等. 国内外食用菌增产添加物研究进展 [J]. 食用菌学报, 2018, 25(1):120−125.

    LIU X M, CHEN Q, WU X L, et al. Usage of mineral and amino acid additives in edible mushroom cultivation [J]. Acta Edulis Fungi, 2018, 25(1): 120−125.(in Chinese)
    [8] NAIM L, ALSANAD M A, SHABAN N, et al. Production and composition of Pleurotus ostreatus cultivated on Lithovit(®)-Amino25 supplemented spent substrate [J]. AMB Express, 2020, 10(1): 188. doi: 10.1186/s13568-020-01124-1
    [9] CARRASCO J, ZIED D C, PARDO J E, et al. Supplementation in mushroom crops and its impact on yield and quality [J]. AMB Express, 2018, 8(1): 146. doi: 10.1186/s13568-018-0678-0
    [10] DHAWAN S, KUHAD R C. Effect of amino acids and vitamins on laccase production by the bird’s nest fungus Cyathus bulleri [J]. Bioresource Technology, 2002, 84(1): 35−38. doi: 10.1016/S0960-8524(02)00026-3
    [11] BEG Q K, BHUSHAN B, KAPOOR M, et al. Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3 [J]. Journal of Industrial Microbiology and Biotechnology, 2000, 24(6): 396−402. doi: 10.1038/sj.jim.7000010
    [12] MIAO J X, WANG M M, MA L, et al. Effects of amino acids on the lignocellulose degradation by Aspergillus fumigatus Z5: Insights into performance, transcriptional, and proteomic profiles [J]. Biotechnology for Biofuels, 2019, 12: 4. doi: 10.1186/s13068-018-1350-2
    [13] 林衍铨, 马璐, 应正河, 等. 碳源和氮源对绣球菌菌丝生长的影响 [J]. 食用菌学报, 2011, 18(3):22−26.

    LIN Y Q, MA L, YING Z H, et al. Effect of carbon and nitrogen source on the growth of Sparassis crispa Mycelium [J]. Acta Edulis Fungi, 2011, 18(3): 22−26.(in Chinese)
    [14] PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads [J]. Nature Biotechnology, 2015, 33(3): 290−295. doi: 10.1038/nbt.3122
    [15] YANG C, MA L, XIAO D L, et al. Chromosome-scale assembly of the Sparassis latifolia genome obtained using long-read and Hi-C sequencing [J]. G3, 2021, 11(8): jkab173. doi: 10.1093/g3journal/jkab173
    [16] ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data [J]. Bioinformatics, 2010, 26(1): 139−140. doi: 10.1093/bioinformatics/btp616
    [17] XIE C, MAO X Z, HUANG J J, et al. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases [J]. Nucleic Acids Research, 2011, 39(S2): W316−W322. doi: 10.1093/nar/gkr483
    [18] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [19] ZHANG H, YOHE T, HUANG L, et al. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation [J]. Nucleic Acids Research, 2018, 46(W1): W95−W101. doi: 10.1093/nar/gky418
    [20] 杨焕玲, 查磊, 赵旭, 等. 培养基中添加海藻糖对大球盖菇、斑玉蕈菌丝生长的影响 [J]. 微生物学通报, 2019, 46(5):1108−1114.

    YANG H L, ZHA L, ZHAO X, et al. Effect of adding trehalose to culture medium on the growth of Stropharia rugosoannulata and Hypsizigus marmoreus [J]. Microbiology China, 2019, 46(5): 1108−1114.(in Chinese)
    [21] 韩美玲, 边禄森, 姜宏浩, 等. 不同碳氮源对糙皮侧耳木质纤维素酶活性的影响 [J]. 菌物学报, 2020, 39(8):1538−1550.

    HAN M L, BIAN L S, JIANG H H, et al. Effects of different carbon and nitrogen sources on lignocellulolytic enzyme activities of Pleurotus ostreatus [J]. Mycosystema, 2020, 39(8): 1538−1550.(in Chinese)
    [22] SHENG Y Q, ZHANG Y, MA H Z, et al. Enhancing prehydrolysates fermentability by adding nucleophilic amino acids and proteins in biomass pretreatment [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(21): 7892−7900.
    [23] VRSANSKA M, VOBERKOVA S, LANGER V, et al. Induction of laccase, lignin peroxidase and manganese peroxidase activities in white-rot fungi using copper complexes [J]. Molecules, 2016, 21(11): 1553. doi: 10.3390/molecules21111553
    [24] 张津京, 陈明杰, 冯志勇, 等. 芳香族化合物对斑玉蕈菌丝生物量、漆酶活性及其转录水平的影响 [J]. 菌物学报, 2016, 35(9):1130−1138.

    ZHANG J J, CHEN M J, FENG Z Y, et al. Effects of aromatic compounds on biomass, laccase activities and transcript levels of Hypsizygus marmoreus [J]. Mycosystema, 2016, 35(9): 1130−1138.(in Chinese)
    [25] 张津京, 汪虹, 陈明杰, 等. 曲酸对斑玉蕈子实体形成过程中木质纤维素酶的影响研究 [J]. 菌物学报, 2018, 37(12):1680−1687.

    ZHANG J J, WANG H, CHEN M J, et al. Effects of kojic acid on lignocellulase at fruiting body formation process of Hypsizygus marmoreus [J]. Mycosystema, 2018, 37(12): 1680−1687.(in Chinese)
    [26] 王言, 余昌霞, 曹晖, 等. 三种有机酸对刺芹侧耳和金针菇菌丝生长的影响 [J]. 食用菌学报, 2015, 22(3):38−42.

    WANG Y, YU C X, CAO H, et al. Effect of oxalic, citric and tartaric acids on Pleurotus eryngii and Flammulina velutipes mycelial biomass production and DNA content [J]. Acta Edulis Fungi, 2015, 22(3): 38−42.(in Chinese)
    [27] CRISTICA M, CIORNEA E, MANOLIU A. Influence of some aminoacids on the activity of cellulolytic and xylanolytic enzymes in the fungus Trichoderma reesei qm-9414 [J]. Agronomy Series of Scientific Research/Lucrari Stiintifice Seria Agronomie, 2012, 55(2): 317−320.
    [28] DESWAL D, KHASA Y P, KUHAD R C. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation [J]. Bioresource Technology, 2011, 102(10): 6065−6072. doi: 10.1016/j.biortech.2011.03.032
    [29] VYAS A, VYAS D, VYAS K. Production and optimization of cellulases on pretreated groundnut shell by Aspergillus terreus AV49 [J]. Journal of Scientific and Industrial Research, 2005, 64(4): 281−286.
    [30] MALLERMAN J, PAPINUTTI L, LEVIN L. Characterization of β-glucosidase produced by the white rot fungus Flammulina velutipes [J]. Journal of Microbiology and Biotechnology, 2015, 25(1): 57−65. doi: 10.4014/jmb.1401.01045
    [31] ARANTES V, MILAGRES A M F, FILLEY T R, et al. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: The relevance of nonenzymatic Fenton-based reactions [J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(4): 541−555.
    [32] SHAH F, MALI T, LUNDELL T K. Polyporales brown rot species Fomitopsis pinicola: Enzyme activity profiles, oxalic acid production, and Fe(3+)-reducing metabolite secretion [J]. Applied and Environmental Microbiology, 2018, 84(8): e02662−17.
    [33] BERNE S, POHLEVEN J, VIDIC I, et al. Ostreolysin enhances fruiting initiation in the oyster mushroom (Pleurotus ostreatus) [J]. Mycological Research, 2007, 111(12): 1431−1436. doi: 10.1016/j.mycres.2007.09.005
    [34] VIDIC I, BERNE S, DROBNE D, et al. Temporal and spatial expression of ostreolysin during development of the oyster mushroom (Pleurotus ostreatus) [J]. Mycological Research, 2005, 109(3): 377−382. doi: 10.1017/S0953756204002187
    [35] BARH A, SHARMA K, BHATT P, et al. Identification of key regulatory pathways of basidiocarp formation in Pleurotus spp. using modeling, simulation and system biology studies [J]. Journal of Fungi, 2022, 8(10): 1073. doi: 10.3390/jof8101073
    [36] 肖冬来, 马璐, 应正河, 等. 广叶绣球菌溶血素基因的序列分析及表达动态 [J]. 食用菌学报, 2016, 23(4):7−13.

    XIAO D L, MA L, YING Z H, et al. Sequence characterization and differential expression of a hemolysin gene and the encoded protein from Sparassis latifolia [J]. Acta Edulis Fungi, 2016, 23(4): 7−13.(in Chinese)
    [37] HAYER-HARTL M, BRACHER A, HARTL F U. The GroEL-GroES chaperonin machine: A nano-cage for protein folding [J]. Trends in Biochemical Sciences, 2016, 41(1): 62−76. doi: 10.1016/j.tibs.2015.07.009
  • 加载中
图(7)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  131
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-05-11
  • 网络出版日期:  2023-07-06
  • 刊出日期:  2023-07-28

目录

    /

    返回文章
    返回