• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玉米甘油-3-磷酸酰基转移酶基因ZmGPAT13生物信息学及表达特性分析

李鑫 柯珂 任晓晨 刘皓宇 张丙林 刘卫娟 邹华文

李鑫,柯珂,任晓晨,等. 玉米甘油-3-磷酸酰基转移酶基因ZmGPAT13生物信息学及表达特性分析 [J]. 福建农业学报,2023,38(8):901−909 doi: 10.19303/j.issn.1008-0384.2023.08.003
引用本文: 李鑫,柯珂,任晓晨,等. 玉米甘油-3-磷酸酰基转移酶基因ZmGPAT13生物信息学及表达特性分析 [J]. 福建农业学报,2023,38(8):901−909 doi: 10.19303/j.issn.1008-0384.2023.08.003
LI X, KE K, REN X C, et al. Bioinformatics and Expression of Glycerol-3-phosphate Acyltransferase 13 Gene of Maize [J]. Fujian Journal of Agricultural Sciences,2023,38(8):901−909 doi: 10.19303/j.issn.1008-0384.2023.08.003
Citation: LI X, KE K, REN X C, et al. Bioinformatics and Expression of Glycerol-3-phosphate Acyltransferase 13 Gene of Maize [J]. Fujian Journal of Agricultural Sciences,2023,38(8):901−909 doi: 10.19303/j.issn.1008-0384.2023.08.003

玉米甘油-3-磷酸酰基转移酶基因ZmGPAT13生物信息学及表达特性分析

doi: 10.19303/j.issn.1008-0384.2023.08.003
基金项目: 国家自然科学基金项目(32201719、31971839、32171952)
详细信息
    作者简介:

    李鑫(1999 —),女,硕士研究生,主要从事作物逆境生理与分子生物学研究,E-mail:3187816301@qq.com

    通讯作者:

    刘卫娟(1987 —),女,博士,副教授,主要从事植物逆境生理与分子生物学研究,E-mail:wjliu@yangtzeu.edu.cn

    邹华文(1973 —),男,博士,教授,主要从事玉米生理与分子生物学研究,E-mail:zouhuawen@yangtzeu.edu.cn

  • 中图分类号: S513

Bioinformatics and Expression of Glycerol-3-phosphate Acyltransferase 13 Gene of Maize

  • 摘要:   目的  对玉米(Zea mays L.)甘油-3-磷酸酰基转移酶(Glycerol-3-phosphate acyltransferase,GPAT)家族成员ZmGPAT13进行生物信息学分析和在不同非生物胁迫处理下的基因表达模式变化检测,为进一步研究ZmGPAT13的生物学功能奠定理论基础。  方法  通过TAIR和MaizeGDB数据库获得拟南芥(Arabidopsis thaliana)和玉米中GPAT家族蛋白序列,利用生物信息学方法进行理化性质、蛋白结构、亚细胞定位、保守基序、系统进化、磷酸化位点和启动子顺式作用元件等分析,并采用荧光定量PCR(qRT-PCR)技术对ZmGPAT13在不同组织部位及甘露醇(Mannitol)、NaCl、脱落酸(ABA)、高温(42 ℃)、低温(4 ℃)处理下的相对基因表达量进行分析。  结果  ZmGPAT13是一个定位于线粒体的跨膜蛋白,与部分GPAT家族成员含有排序相同的15个保守基序(motif),且与拟南芥中AtGPAT1的亲缘关系最近;预测分析发现ZmGPAT13含有62个磷酸化位点,可能与玉米中多个GPATs存在相互作用关系;ZmGPAT13基因启动子富含多种与低温和ABA响应等相关的顺式作用元件。通过qRT-PCR技术对ZmGPAT13组织表达模式分析发现ZmGPAT13的相对基因表达量在胚芽鞘(Coleoptile)中最高,根(Root)中次之,叶片(Leaf)中最低;甘露醇(Mannitol)、NaCl、脱落酸(ABA)及高温(42 ℃)和低温(4 ℃)处理均能诱导ZmGPAT13的基因表达显著上调。  结论  玉米中ZmGPAT13具有高度的进化保守性,可能通过转录水平的变化参与调控玉米对干旱、盐、高温和低温等非生物胁迫的响应过程。
  • 图  1  ZmGPAT13跨膜结构域(A)、蛋白二级结构(B)和蛋白三级结构(C)分析

    Figure  1.  Transmembrane domain (A), secondary structure (B), and tertiary structure (C) of ZmGPAT13

    图  2  拟南芥和玉米中GPAT家族成员保守基序分析(A)及蛋白保守基序的氨基酸序列(B)

    Figure  2.  Conserved motifs of GPATs from arabidopsis and maize (A), and amino acid sequences of conserved motifs (B)

    图  3  拟南芥和玉米中GPAT家族成员进化树分析

    Figure  3.  Phylogenetic tree of GPATs from arabidopsis and maize

    图  4  玉米中ZmGPAT13在不同组织及不同外源非生物胁迫处理下的表达

    A:不同玉米组织;B:200 mmol·L−1 甘露醇处理;C:200 mmol·L−1 NaCl处理;D:100 μmol·L−1 ABA处理;E:42 ℃高温处理;F:4 ℃低温处理。不同小写字母表示不同处理间差异显著(P < 0.05)。

    Figure  4.  Relative expressions of ZmGPAT13 in tissues under abiotic stresses

    A: Different tissues; B: Mannitol treatment at 200 mmol·L−1; C: NaCl treatment at 200 mmol·L−1; D: ABA treatment at 100 μmol·L−1; E: High-temperature treatment at 42 ℃; F: Low temperature treatment at 4 ℃. Data with different lowercase letters indicate significant differences at P<0.05.

    表  1  实时荧光定量PCR引物序列

    Table  1.   Primer pairs for qRT-PCR verification

    基因
    Gene
    引物
    Primer
    引物序列(5′-3′)
    Primer sequence(5′-3′)
    ZmGPAT13ZmGPAT13-qFCGATCAGGGAGGCGTTGTTA
    ZmGPAT13ZmGPAT13-qRCCTTGCAGTAGGGGACGAAG
    ZmActin2ZmActin2-qFGCCATCCATGATCGGTATGG
    ZmActin2ZmActin2-qRGTCGCACTTCATGATGGAGTTG
    下载: 导出CSV

    表  2  ZmGPAT13磷酸化位点预测分析

    Table  2.   Predicted phosphorylation sites of ZmGPAT13

    氨基酸
    Amino acid
    磷酸化位点
    Phosphorylation sites
    激酶类型
    Kinase groups
    丝氨酸 Serine 43(2),187(2),222(2),279(2),286(2),353(2),451(2),496(2),540(2) cdc2,PKC,PKG,RSK
    51,104,168,221,223,257,258,276,324,397,402,479 DNAPK,cdc2,PKA,UNSP,CKII,PKC
    苏氨酸 Threonine 37(2),217(2),227(2),414(2),472(2),510(2),516(2) PKC,UNSP,PKB,CKII,cdc2,PKG
    17,38,55,60,65,89,180,385,440,441, 384,410,423 PKC,cdc2,UNSP
    酪氨酸 Tyrosine 273,290,370,474,545 INSR,UNSP
    cdc2:细胞周期依赖性蛋白激酶;CKII:酪蛋白激酶II;DNAPK:DNA依赖性激酶;INSR:受体酪氨酸蛋白激酶;PKA:蛋白激酶A; PKC:蛋白激酶C;PKG:蛋白激酶G;RSK:核糖体S6蛋白激酶;PKB:蛋白激酶B;UNSP:无特异性蛋白激酶。括号内数字为所含氨基酸磷酸化位点个数。
    cdc2: Cyclin-dependent kinase; CKII: Casein protein kinase II; DNAPK: DNA-dependent protein kinase; INSR: Insulin receptor tyrosine protein kinase; PKA: Protein kinase A; PKC: Protein kinase C; PKG: Protein kinase G; RSK: Ribosomal protein S6 kinases; PKB: Protein kinase B; UNSP: Unknown specific protein kinase. Number in brackets indicates count of amino acid sites contained.
    下载: 导出CSV

    表  3  ZmGPAT13功能互作蛋白预测分析

    Table  3.   Predicted functional interaction proteins of ZmGPAT13

    基因编号
    Gene ID
    功能结构域
    Function domain
    氨基酸
    Amino
    acid
    互作系数
    Interaction
    coefficient
    GRMZM2G123987PlsC3710.954
    GRMZM2G159890PlsC,GPAT_N domain4770.940
    GRMZM2G165681PlsC3710.936
    GRMZM2G135027PlsC,Acyltransf_C domain3990.783
    GRMZM2G014981PlsC,Acyltransf_C domain4030.783
    GRMZM2G037104PlsC,Acyltransf_C domain3740.763
    GRMZM2G878139PlsC,Acyltransf_C domain3740.763
    GRMZM2G071076Choline_transpo domain5370.721
    GRMZM2G075295PlsC,HAD domain4860.698
    GRMZM2G083195PlsC,HAD domain5020.682
    下载: 导出CSV

    表  4  ZmGPAT13基因启动子顺式作用元件分析

    Table  4.   Cis-acting elements of ZmGPAT13 promoter

    序号
    No.
    元件名称
    Element
    序列
    Sequence
    功能预测
    Predicted function
    1 ABRE ACGTG 脱落酸响应
    Abscisic acid responsive
    2 LTR CCGAAA 低温响应
    Low temperature responsive
    3 TGACG-motif TGACG 茉莉酸甲酯响应
    MeJA responsive
    4 CGTCA-motif CGTCA 茉莉酸甲酯响应
    MeJA responsive
    5 Sp1 GGGCGG 光响应
    Light responsive
    6 O2-site GATGATGTGG 玉米醇溶蛋白代谢
    Zein metabolism
    7 GCN4_motif TGAGTCA 胚乳表达
    Endosperm expression
    8 GC-motif CCCCCG 厌氧诱导
    Anaerobic induction
    9 AuxRR-core GGTCCAT 生长素响应
    Auxin responsive
    10 CCAAT-box CAACGG MYBHv1结合位点
    MYBHv1 binding site
    下载: 导出CSV
  • [1] OHLROGGE J, BROWSE J. Lipid biosynthesis [J]. The Plant Cell, 1995, 7(7): 957−970.
    [2] ROUGHAN P G, SLACK C R. Cellular organization of glycerolipid metabolism [J]. Annual Review of Plant Physiology, 1982, 33: 97−132. doi: 10.1146/annurev.pp.33.060182.000525
    [3] LI-BEISSON Y, SHORROSH B, BEISSON F, et al. Acyl-lipid metabolism [J]. The Arabidopsis Book, 2013, 11: e0161. doi: 10.1199/tab.0161
    [4] 朱涛涛. 玉米ZmMs33/ZmGPAT6调控花药发育的机理及其基因家族功能研究[D]. 北京: 北京科技大学, 2022.

    ZHU T T. Molecular mechanism of ZmMs33/ZmGPAT6 in controlling anther development and functional analysis of ZmGPAT gene family in maize[D]. Beijing: University of Science and Technology Beijing, 2022. (in Chinese)
    [5] YANG W L, SIMPSON J P, LI-BEISSON Y, et al. A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: Substrate specificity, Sn-2 preference, and evolution [J]. Plant Physiology, 2012, 160(2): 638−652. doi: 10.1104/pp.112.201996
    [6] LI X C, ZHU J, YANG J, et al. Glycerol-3-phosphate acyltransferase 6 (GPAT6) is important for tapetum development in Arabidopsis and plays multiple roles in plant fertility [J]. Molecular Plant, 2012, 5(1): 131−142. doi: 10.1093/mp/ssr057
    [7] LV Y Y, ZHANG X R, LUO L, et al. Characterization of glycerol-3-phosphate acyltransferase 9 (AhGPAT9) genes, their allelic polymorphism and association with oil content in peanut (Arachis hypogaea L. ) [J]. Scientific Reports, 2020, 10: 14648. doi: 10.1038/s41598-020-71578-7
    [8] ZHENG Z F, XIA Q, DAUK M, et al. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility [J]. The Plant Cell, 2003, 15(8): 1872−1887. doi: 10.1105/tpc.012427
    [9] 韩妮莎, 丁硕, 郑月萍, 等. 植物甘油脂合成途径第一步酰化反应的研究进展 [J]. 中国油料作物学报, 2022, 44(4):699−711. doi: 10.19802/j.issn.1007-9084.2021139

    HAN N S, DING S, ZHENG Y P, et al. Advance in studies on the initial step of the glycerolipid biosynthetic pathway in plants [J]. Chinese Journal of Oil Crop Sciences, 2022, 44(4): 699−711.(in Chinese) doi: 10.19802/j.issn.1007-9084.2021139
    [10] BAI Y, SHEN Y, ZHANG Z Q, et al. A GPAT1 mutation in Arabidopsis enhances plant height but impairs seed oil biosynthesis [J]. International Journal of Molecular Sciences, 2021, 22(2): 785. doi: 10.3390/ijms22020785
    [11] ZHU T T, WU S W, ZHANG D F, et al. Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene [J]. Theoretical and Applied Genetics, 2019, 132(7): 2137−2154. doi: 10.1007/s00122-019-03343-y
    [12] 杨成兰, 祁存英, 马银花, 等. 青稞GPAT基因家族全基因鉴定及表达分析 [J]. 植物生理学报, 2022, 58(10):2006−2016.

    YANG C L, QI C Y, MA Y H, et al. Identification and expression analysis of GPAT gene family in hulless barley [J]. Plant Physiology Journal, 2022, 58(10): 2006−2016.(in Chinese)
    [13] KANG H L, JIA C X, LIU N, et al. Plastid glycerol-3-phosphate acyltransferase enhanced plant growth and prokaryotic glycerolipid synthesis in Brassica napus [J]. International Journal of Molecular Sciences, 2020, 21(15): 5325. doi: 10.3390/ijms21155325
    [14] JAYAWARDHANE K N, SINGER S D, WESELAKE R J, et al. Plant sn-glycerol-3-phosphate acyltransferases: Biocatalysts involved in the biosynthesis of intracellular and extracellular lipids [J]. Lipids, 2018, 53(5): 469−480. doi: 10.1002/lipd.12049
    [15] 刘聪, 肖旦望, 胡学芳, 等. 甘蓝型油菜2个GPAT6同源基因的克隆与表达分析 [J]. 作物学报, 2014, 40(7):1304−1310. doi: 10.3724/SP.J.1006.2014.01304

    LIU C, XIAO D W, HU X F, et al. Cloning and expression analysis of two homologous genes coding sn-glycerol-3-phosphate acyltransferase 6 in Brassica napus [J]. Acta Agronomica Sinica, 2014, 40(7): 1304−1310.(in Chinese) doi: 10.3724/SP.J.1006.2014.01304
    [16] WANG J X, SINGH S K, GENG S Y, et al. Genome-wide analysis of glycerol-3-phosphate O-acyltransferase gene family and functional characterization of two cutin group GPATs in Brassica napus [J]. Planta, 2020, 251(4): 93. doi: 10.1007/s00425-020-03384-4
    [17] FAWKE S, TORODE T A, GOGLEVA A, et al. Glycerol-3-phosphate acyltransferase 6 controls filamentous pathogen interactions and cell wall properties of the tomato and Nicotiana benthamiana leaf epidermis [J]. The New Phytologist, 2019, 223(3): 1547−1559. doi: 10.1111/nph.15846
    [18] ZHU Y Q, LIU Y, ZHOU K M, et al. Overexpression of ZmEREBP60 enhances drought tolerance in maize [J]. Journal of Plant Physiology, 2022, 275: 153763. doi: 10.1016/j.jplph.2022.153763
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  204
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-02
  • 修回日期:  2023-04-14
  • 网络出版日期:  2023-09-19
  • 刊出日期:  2023-08-28

目录

    /

    返回文章
    返回