• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

秸秆还田对稻田土壤磷素形态及磷循环微生物功能基因的影响

李季 张桥 张嘉欣 韩兴华 黎婉玲 孙丽丽 顾文杰 卢钰升 解开治 徐培智

李季,张桥,张嘉欣,等. 秸秆还田对稻田土壤磷素形态及磷循环微生物功能基因的影响 [J]. 福建农业学报,2023,38(10):1230−1241 doi: 10.19303/j.issn.1008-0384.2023.10.012
引用本文: 李季,张桥,张嘉欣,等. 秸秆还田对稻田土壤磷素形态及磷循环微生物功能基因的影响 [J]. 福建农业学报,2023,38(10):1230−1241 doi: 10.19303/j.issn.1008-0384.2023.10.012
LI J, ZHANG Q, ZHANG J X, et al. Effects of Straw-returning on Phosphorus Morphology and Microbial Phosphorus-cycling Genes in Rice Paddy Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(10):1230−1241 doi: 10.19303/j.issn.1008-0384.2023.10.012
Citation: LI J, ZHANG Q, ZHANG J X, et al. Effects of Straw-returning on Phosphorus Morphology and Microbial Phosphorus-cycling Genes in Rice Paddy Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(10):1230−1241 doi: 10.19303/j.issn.1008-0384.2023.10.012

秸秆还田对稻田土壤磷素形态及磷循环微生物功能基因的影响

doi: 10.19303/j.issn.1008-0384.2023.10.012
基金项目: 广东省农业科学院低碳农业与碳中和研究中心项目(XT202220);广东省科技计划项目(2021B1212050020);广东省农业科学院农业优势产业学科团队建设项目(202121TD);广东省现代农业产业技术体系创新团队项目(2023KJ118);广东省农业科学院中青年学科带头人培养计划(R2020PY-JG012);广东省农业科学院汕尾分院科技合作专项(2021-分院专项-02);茂名实验室科研启动项目(2021TDQD002)
详细信息
    作者简介:

    李季(1999 —),女,硕士,主要从事土壤磷循环研究,E-mail:liji03162020@163.com

    通讯作者:

    解开治(1977 —),男,博士,研究员,主要从事农业微生物研究,E-mail:xiekzgsau@163.com

    徐培智(1963 —),男,学士,研究员,主要从事土壤碳氮磷循环研究,E-mail:pzxu007@163.com

  • 中图分类号: S153

Effects of Straw-returning on Phosphorus Morphology and Microbial Phosphorus-cycling Genes in Rice Paddy Soil

  • 摘要:   目的  以南方酸性土壤连续8年秸秆还田定位试验田为研究对象,探究秸秆还田对水稻分蘖期与成熟期土壤磷循环微生物功能基因的影响。  方法  定位试验共设置5个处理:化肥+无秸秆还田(CK)、化肥+当季秸秆全量还田(CKS)、化肥+当季秸秆全量还田+秸秆替代10%钾肥(S10)、化肥+当季秸秆全量还田+秸秆替代20%钾肥(S20)和化肥+当季秸秆全量还田+秸秆替代30%钾肥(S30)。利用Guppy土壤磷素连续浸提法和宏基因组测序技术,分别测定土壤磷素组分和磷循环微生物功能基因数据。  结果  秸秆还田处理显著提高了Guppy土壤磷分级中可利用磷组分NaHCO3-Pi的含量(P<0.05),其中S10、S20处理较CK处理提升了5.88%~8.73%;中等可利用磷组分中NaOH-Pi为南方酸性稻田土壤最主要的磷素形态,含量为154.03~202.11 mg·kg−1。同时,秸秆还田还显著影响了土壤磷循环微生物功能基因的丰度,其中无机磷溶解基因pqqC对秸秆全量还田处理的响应更为明显。秸秆还田条件下磷循环功能基因(如phnWphnOpqqBpqqC)促进了盐酸磷和残余磷向可利用磷库的活化,appAphnXppx基因参与了稳定态磷的活化过程,NaOH-Pi为关键的过渡态磷素,参与长期的磷素转化过程。此外,土壤有机碳和pH是决定功能基因丰度的主要影响因子。  结论  秸秆还田通过影响土壤理化性质,改变了稻田土壤磷循环功能基因丰度,促进了南方酸性稻田土壤磷素转化过程。
  • 图  1  水稻不同生育期不同处理土壤可利用磷组分及含量

    图中不同小写字母表示处理间差异显著(P<0.05)。下同。

    Figure  1.  Easily available phosphorus in soil under various treatments at rice growth stages

    Data with different lowercase letters indicate significant differences at P<0.05. Same for below.

    图  2  水稻不同生育期不同处理土壤中等可利用磷组分及含量

    Figure  2.  Moderately available phosphorus in soil under various treatments at rice growth stages

    图  3  水稻不同生育期不同处理土壤稳定态磷组分及含量

    Figure  3.  Non-available phosphorus in soil under various treatments at rice growth stages

    图  4  土壤有机磷矿化基因的相对丰度

    A和B分别代表水稻分蘖期与成熟期编码酸性磷酸酶、碱性磷酸酶和植酸酶的基因,C和D分别表示水稻分蘖期与成熟期编码C-P键裂解酶的基因。*( P <0.05),**( P <0.01)。

    Figure  4.  Relative abundance of organic phosphorus-mineralizing genes in soil

    A and B represent the genes encoding acid phosphatase, alkaline phosphatase and phytase at tillering and maturing stages, C and D represent the genes encoding C-P bond cleavage enzymes at tillering and maturing stages, respectively. * (P <0.05), ** (P <0.01).

    图  5  土壤无机磷溶解基因的相对丰度

    A和B分别表示水稻分蘖期和成熟期,下同。

    Figure  5.  Relative abundance of organic phosphorus-mineralizing genes in soil

    A and B represent tillering and maturing stages, same for below.

    图  6  土壤理化性质与磷循环功能基因的相关性分析

    Figure  6.  Correlation between physiochemical properties and phosphorus-cycling genes in soil

    图  7  土壤磷素组分与磷循环功能基因的相关性分析

    Figure  7.  Correlation between phosphorus components and phosphorus-cycling genes in soil

    表  1  不同处理化肥养分投入量

    Table  1.   Nutrients in treatment fertilizers (kg·hm−2

    处理
    Treatment
    早稻 Early rice 晚稻 Late rice 总计 Total
    NP2O5K2O NP2O5K2O NP2O5K2O
    CK 155.3 47.3 135.0 155.3 47.3 135.0 310.5 94.5 270.0
    CKS 155.3 47.3 135.0 155.3 47.3 135.0 310.5 94.5 270.0
    S10 155.3 47.3 121.5 155.3 47.3 121.5 310.5 94.5 243.0
    S20 155.3 47.3 108.0 155.3 47.3 108.0 310.5 94.5 216.0
    S30 155.3 47.3 94.5 155.3 47.3 94.5 310.5 94.5 189.0
    下载: 导出CSV

    表  2  磷循环微生物功能基因

    Table  2.   Microbial phosphorus-cycling genes

    功能基因分组
    Functional gene grouping
    基因名称
    Gene name
    KEGG编号
    KEGG number
    基因功能详情
    Gene Function Detials
    有机磷矿化基因
    Genes involved in organic P-mineralization
    phoNK09474酸性磷酸酶 (A) Acid phosphatase (class A)
    olpAK01078酸性磷酸酶(C)acid phosphatase (class C)
    aphAK03788酸性磷酸酶 (B) Acid phosphatase (class B)
    phoAK01077碱性磷酸酶 Alkaline phosphatase
    phoDK01113碱性磷酸酶 Alkaline phosphatase D
    phoXK02040碱性磷酸酶 Alkaline phosphatase
    phyAK010833-植酸酶 3-phytase
    appAK010934-植酸酶/酸性磷酸酶 4-phytase/acid phosphatase
    phnWK034302-氨基乙基膦酸-丙酮酸转氨酶 2-aminoethylphosphonate-pyruvate transaminase
    phnXK05306膦酸乙醛水解酶 Phosphonoacetaldehyde hydrolase
    phnAK06193烷基膦酸酯利用操纵子 Alkylphosphonate utilization operon protein
    phnNK05774碳-磷键裂解酶复合物 C-P lyase multienzyme complex
    phnLK05780碳-磷键裂解酶复合物 C-P lyase multienzyme complex
    phnMK06162碳-磷键裂解酶复合物 C-P lyase multienzyme complex
    phnFK02043酸酯转运系统调控蛋白 Phosphonate transport system regulatory protein
    phnGK06166碳-磷键裂解酶复合物 C-P lyase multienzyme complex
    phnHK06165碳-磷键裂解酶复合物 C-P lyase multienzyme complex
    phnIK06164碳-磷键裂解酶复合物 C-P lyase multienzyme complex
    phnJK06163碳-磷键裂解酶复合物 C-P lyase multienzyme complex
    phnOK09994碳-磷键裂解酶复合物 C-P lyase multienzyme complex
    phnKK05781C-P 裂解酶亚基,α-d-核糖 1-甲基膦酸 5-三磷酸合酶
    C-P lyase subunit,alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase
    phnPK06167酸核糖基1,2-环磷酸二酯酶 Phosphoribosyl 1,2-cyclicphosphate phosphoDiesterase
    无机磷溶解基因
    Inorganic phosphate solubilization
    ppaK01507无机焦磷酸酶 Inorganic pyrophosphatase
    ppxK01524外切多聚磷酸酶 Exopolyphosphatase/鸟苷-5'-三磷酸,3'-二磷酸焦磷酸酶
    Guanosine-5'-triphosphate 3'-diphosphate pyrophosphatase
    ppkK00937多聚磷酸激酶 Polyphosphate kinase
    gcdK00117葡萄糖脱氢酶 Quinoprotein glucose dehydrogenase
    pqqBK06136吡咯喹啉醌合成蛋白 B Pyrroloquinoline quinonebiosynthesis protein B
    pqqCK06137吡咯喹啉醌合成酶 Pyrroloquinoline-quinone synthase
    pqqDK06138吡咯喹啉醌合成蛋白 Pyrroloquinoline quinonebiosynthesis protein
    pqqEK06139PqqA 肽环酶 PqqA peptide cyclase
    下载: 导出CSV
  • [1] TURNER B L, CHEESMAN A W, CONDRON L M, et al. Introduction to the special issue: Developments in soil organic phosphorus cycling in natural and agricultural ecosystems [J]. Geoderma, 2015, 257/258: 1−3. doi: 10.1016/j.geoderma.2015.06.008
    [2] GEORGE T S, GILES C D, MENEZES-BLACKBURN D, et al. Organic phosphorus in the terrestrial environment: A perspective on the state of the art and future priorities [J]. Plant and Soil, 2018, 427(1/2): 191−208.
    [3] BERGKEMPER F, SCHÖLER A, ENGEL M, et al. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems [J]. Environmental Microbiology, 2016, 18(8): 2767. doi: 10.1111/1462-2920.13442
    [4] DAI Z M, LIU G F, CHEN H H, et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems [J]. The ISME Journal, 2020, 14(3): 757−770. doi: 10.1038/s41396-019-0567-9
    [5] BOLLE S, GEBREMIKAEL M T, MAERVOET V, et al. Performance of phosphate-solubilizing bacteria in soil under high phosphorus conditions [J]. Biology and Fertility of Soils, 2013, 49(6): 705−714. doi: 10.1007/s00374-012-0759-1
    [6] LI J T, LU J L, WANG H Y, et al. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes [J]. Biological Reviews of the Cambridge Philosophical Society, 2021, 96(6): 2771−2793. doi: 10.1111/brv.12779
    [7] 方凯, 孙丽丽, 周昌敏, 等. 长期秸秆还田对双季稻土壤有机碳组分及碳库管理指数的影响 [J]. 福建农业学报, 2022, 37(9):1216−1224.

    FANG K, SUN L L, ZHOU C M, et al. Effects of long-term spent straw incorporation on organic carbons in soil and carbon pool management at two-crop rice fields [J]. Fujian Journal of Agricultural Sciences, 2022, 37(9): 1216−1224.(in Chinese)
    [8] 周旦, 王欣, 郭小军, 等. 长期有机培肥对红壤有机碳组分及水稻产量的影响 [J]. 福建农业学报, 2021, 36(8):867−877.

    ZHOU D, WANG X, GUO X J, et al. Effects of long-term organic fertilization on organic carbon and microbial community in red soil and rice yield [J]. Fujian Journal of Agricultural Sciences, 2021, 36(8): 867−877.(in Chinese)
    [9] 颜双双. 寒地水稻秸秆还田对土壤碳磷组分与微生物影响效应的研究[D]. 哈尔滨: 东北农业大学, 2021.

    YAN S S. Effects of rice straw return on soil organic carbon fractions, phosphorus fractions and microbial community in cold region[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese)
    [10] ROBLES-AGUILAR A A, PANG J Y, POSTMA J A, et al. The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source [J]. Plant and Soil, 2019, 434(1/2): 65−78.
    [11] YANG O Y, EVANS S E, FRIESEN M L, et al. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies [J]. Soil Biology and Biochemistry, 2018, 127: 71−78. doi: 10.1016/j.soilbio.2018.08.024
    [12] RANJAN R, RANI A, METWALLY A, et al. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing [J]. Biochemical and Biophysical Research Communications, 2016, 469(4): 967−977. doi: 10.1016/j.bbrc.2015.12.083
    [13] NEAL A L, ROSSMANN M, BREARLEY C, et al. Land-use influences phosphatase gene microdiversity in soils [J]. Environmental Microbiology, 2017, 19(7): 2740−2753. doi: 10.1111/1462-2920.13778
    [14] 唐治喜, 高菊生, 宋阿琳, 等. 用宏基因组学方法研究绿肥对水稻根际微生物磷循环功能基因的影响 [J]. 植物营养与肥料学报, 2020, 26(9):1578−1590.

    TANG Z X, GAO J S, SONG A L, et al. Impact of green manure on microbial phosphorus cycling genes in rice rhizosphere as investigated by metagenomics [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1578−1590.(in Chinese)
    [15] LIANG J L, LIU J, JIA P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining [J]. The ISME Journal, 2020, 14(6): 1600−1613. doi: 10.1038/s41396-020-0632-4
    [16] 龙方莉. 秸秆还田对稻田土壤磷循环微生物及关键功能基因的影响[D]. 武汉: 华中农业大学, 2022.

    LONG F L. Effects of straw returning on phosphorus cycling microorganisms and key functional genes in paddy soil[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese)
    [17] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
    [18] BROOKES P C, POWLSON D S, JENKINSON D S. Measurement of microbial biomass phosphorus in soil [J]. Soil Biology and Biochemistry, 1982, 14(4): 319−329. doi: 10.1016/0038-0717(82)90001-3
    [19] GUPPY C N, MENZIES N W, MOODY P W, et al. Analytical methods and quality assurance [J]. Communications in Soil Science and Plant Analysis, 2000, 31(11/12/13/14): 1981−1991.
    [20] VON SPERBER C, STALLFORTH R, DU PREEZ C, et al. Changes in soil phosphorus pools during prolonged arable cropping in semiarid grasslands [J]. European Journal of Soil Science, 2017, 68(4): 462−471. doi: 10.1111/ejss.12433
    [21] WANG G W, JIN Z X, WANG X X, et al. Simulated root exudates stimulate the abundance of Saccharimonadales to improve the alkaline phosphatase activity in maize rhizosphere [J]. Applied Soil Ecology, 2022, 170: 104274. doi: 10.1016/j.apsoil.2021.104274
    [22] JAVOT H, PUMPLIN N, HARRISON M J. Phosphate in the arbuscular mycorrhizal symbiosis: Transport properties and regulatory roles [J]. Plant, Cell & Environment, 2007, 30(3): 310−322.
    [23] GARCIA-SANCHEZ M, BERTRAND I, BARAKAT A, et al. Improved rock phosphate dissolution from organic acids is driven by nitrate assimilation of bacteria isolated from nitrate and CaCO3-rich soil [J]. PLoS One, 2023, 18(3): e0283437. doi: 10.1371/journal.pone.0283437
    [24] ILLMER P, SCHINNER F. Solubilization of inorganic calcium phosphates—Solubilization mechanisms [J]. Soil Biology and Biochemistry, 1995, 27(3): 257−263. doi: 10.1016/0038-0717(94)00190-C
    [25] 樊磊, 叶小梅, 何加骏, 等. 解磷微生物对土壤磷素作用的研究进展 [J]. 江苏农业科学, 2008, 36(5):261−263.

    FAN L, YE X M, HE J J, et al. Research progress on the effect of phosphorus-solubilizing microorganisms on soil phosphorus [J]. Jiangsu Agricultural Sciences, 2008, 36(5): 261−263.(in Chinese)
    [26] ZHENG M M, WANG C, LI W X, et al. Soil nutrients drive function and composition of phoC-harboring bacterial community in acidic soils of southern China [J]. Frontiers in Microbiology, 2019, 10: 2654. doi: 10.3389/fmicb.2019.02654
    [27] 李益. 森林土壤磷循环功能基因变化特征及其影响因素[D]. 西安: 西北大学, 2022.

    LI Y. Variation characteristics and influencing factors of forest soil phosphorus cycle functional genes[D]. Xi 'an: Northwest University, 2022. (in Chinese)
    [28] LIU J Y, LI F Y, LIU J J, et al. Grazing promotes soil phosphorus cycling by enhancing soil microbial functional genes for phosphorus transformation in plant rhizosphere in a semi-arid natural grassland [J]. Geoderma, 2023, 430: 116303. doi: 10.1016/j.geoderma.2022.116303
    [29] ZHANG N N, SAINJU U M, ZHAO F Z, et al. Mulching decreased the abundance of microbial functional genes in phosphorus cycling under maize [J]. Applied Soil Ecology, 2023, 187: 104833. doi: 10.1016/j.apsoil.2023.104833
    [30] HU Y J, XIA Y H, SUN Q, et al. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils [J]. Science of the Total Environment, 2018, 628/629: 53−63. doi: 10.1016/j.scitotenv.2018.01.314
    [31] RAGOT S A, KERTESZ M A, MÉSZÁROS É, et al. Soil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factors [J]. FEMS Microbiology Ecology, 2017, 93(1): fiw212. doi: 10.1093/femsec/fiw212
    [32] WAN W J, HAO X L, XING Y H, et al. Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus mineralization [J]. Land Degradation & Development, 2021, 32(2): 766−776.
    [33] ZHENG W, ZHAO Z Y, LV F L, et al. Metagenomic exploration of the interactions between N and P cycling and SOM turnover in an apple orchard with a cover crop fertilized for 9 years [J]. Biology and Fertility of Soils, 2019, 55(4): 365−381. doi: 10.1007/s00374-019-01356-9
    [34] YAO Q M, LI Z, SONG Y, et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil [J]. Nature Ecology & Evolution, 2018, 2(3): 499−509.
    [35] LI H Y, WANG H, WANG H T, et al. Correction to: The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales [J]. Microbiome, 2020, 8(1): 169. doi: 10.1186/s40168-020-00945-3
    [36] HU M J, LE Y X, SARDANS J, et al. Moderate salinity improves the availability of soil P by regulating P-cycling microbial communities in coastal wetlands [J]. Global Change Biology, 2023, 29(1): 276−288. doi: 10.1111/gcb.16465
    [37] MARANGUIT D, GUILLAUME T, KUZYAKOV Y. Land-use change affects phosphorus fractions in highly weathered tropical soils [J]. CATENA, 2017, 149: 385−393. doi: 10.1016/j.catena.2016.10.010
    [38] YIN Y N, YANG C, LI M T, et al. Biochar reduces bioavailability of phosphorus during swine manure composting: Roles of phoD-harboring bacterial community [J]. Science of the Total Environment, 2023, 858: 159926. doi: 10.1016/j.scitotenv.2022.159926
    [39] LUO G W, LING N, NANNIPIERI P, et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions [J]. Biology and Fertility of Soils, 2017, 53(4): 375−388. doi: 10.1007/s00374-017-1183-3
    [40] WEI Z M, ZUO H D, LI J, et al. Insight into the mechanisms of insoluble phosphate transformation driven by the interactions of compound microbes during composting [J]. Environmental Science and Pollution Research, 2021, 28(25): 32844−32855. doi: 10.1007/s11356-021-13113-3
    [41] 苗淑杰, 周连仁, 乔云发, 等. 长期施肥对黑土有机碳矿化和团聚体碳分布的影响 [J]. 土壤学报, 2009, 46(6):1068−1075. doi: 10.3321/j.issn:0564-3929.2009.06.014

    MIAO S J, ZHOU L R, QIAO Y F, et al. Organic carbon mineralization and carbon contribution in aggregates as affected by long-term fertilization [J]. Acta Pedologica Sinica, 2009, 46(6): 1068−1075.(in Chinese) doi: 10.3321/j.issn:0564-3929.2009.06.014
    [42] WRIGHT R B, LOCKABY B G, WALBRIDGE M R. Phosphorus availability in an artificially flooded southeastern floodplain forest soil [J]. Soil Science Society of America Journal, 2001, 65(4): 1293−1302. doi: 10.2136/sssaj2001.6541293x
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  220
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 录用日期:  2023-04-10
  • 修回日期:  2023-05-17
  • 网络出版日期:  2023-10-25
  • 刊出日期:  2023-10-28

目录

    /

    返回文章
    返回