• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国水仙FT基因的表达及功能分析

李婷婷 潘秋宇 吴菁华

李婷婷,潘秋宇,吴菁华. 中国水仙FT基因的表达及功能分析 [J]. 福建农业学报,2023,38(12):1420−1427 doi: 10.19303/j.issn.1008-0384.2023.12.005
引用本文: 李婷婷,潘秋宇,吴菁华. 中国水仙FT基因的表达及功能分析 [J]. 福建农业学报,2023,38(12):1420−1427 doi: 10.19303/j.issn.1008-0384.2023.12.005
LI T T, PAN Q Y, WU J H. Expressions and Functions of Flowering Locus Ts in Narcissus tazetta var. chinensis Roem [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1420−1427 doi: 10.19303/j.issn.1008-0384.2023.12.005
Citation: LI T T, PAN Q Y, WU J H. Expressions and Functions of Flowering Locus Ts in Narcissus tazetta var. chinensis Roem [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1420−1427 doi: 10.19303/j.issn.1008-0384.2023.12.005

中国水仙FT基因的表达及功能分析

doi: 10.19303/j.issn.1008-0384.2023.12.005
基金项目: 福建省自然科学基金项目(2021J01087); 福建省科技计划星火项目(2021S0068)
详细信息
    作者简介:

    李婷婷(1994 —),女,硕士,主要从事园艺植物遗传育种相关研究,E-mail:15236174388@qq.com

    通讯作者:

    吴菁华(1978 —),女,博士,副教授,主要从事园艺植物遗传育种相关研究,E-mail:wjhham@163.com

  • 中图分类号: S682.21

Expressions and Functions of Flowering Locus Ts in Narcissus tazetta var. chinensis Roem

  • 摘要:   目的  开花基因座T(Flowering Locus TFT)基因广泛参与植物的生长发育,在调控开花、地下茎发育、种子萌发和逆境胁迫等过程中发挥重要作用。揭示FT基因在中国水仙(Narcissus tazetta var. chinensis Roem)中的表达模式和功能可为中国水仙花期调控提供理论依据。  方法  基于中国水仙转录组数据,对FT 基因进行筛选,获得4个中国水仙FT基因。利用荧光定量PCR技术分析它们在中国水仙不同组织和花芽分化不同时期的表达模式,并在拟南芥(Arabidopsis thaliana)中超量表达。利用荧光定量PCR技术分析转NtFT1NtFT4基因拟南芥中SUPPRESSOR OF OVEREXPRESSION OF CO 1SOC1)、LEAFY(LFY)和APETALA 1AP1) 基因表达水平。  结果  克隆了4个中国水仙FT同源基因NtFT1NtFT2NtFT3NtFT4,NtFT3外,中国水仙NtFT都具有FT的保守基序;系统进化分析显示,NtFT1属于FT-like I进化枝,NtFT2、NtFT3和NtFT4同属于FT-like II类进化枝。不同的NtFT基因在中国水仙组织器官和花芽分化不同时期的表达模式存在差异:NtFT1NtFT3在花中表达量最高,NtFT2在叶片中表达量最高,NtFT4在鳞片中的表达量最高;NtFT1在花芽分化过程中均呈先上升后下降的趋势,NtFT2整个主芽分化过程中变化幅度不大,NtFT3NtFT4在整个花芽分化期表达量都较低。异位转化拟南芥结果显示,与野生型拟南芥相比,过表达NtFT1NtFT2的拟南芥提早开花,过表达NtFT3拟南芥开花时间与野生型植株无明显差异,转NtFT4基因的拟南芥植株推迟开花。过表达NtFT1拟南芥中SOC1LFYAP1基因表达量上升。  结论  在中国水仙中存在多个FT基因,在调控开花的功能上存在差异,NtFT1促进开花,NtFT4抑制开花。
  • 图  1  NtFT与其他物种FT氨基酸序列的多重比较

    Figure  1.  Multiple comparison on amino acid sequences of NtFT and FTs of other species

    图  2  NtFT与其他植物FT 蛋白的系统进化树分析

    Figure  2.  Phylogenetic trees of NtFT and FTs of other species

    图  3  NtFT基因在不同组织中的qRT-PCR表达分析

    不同小写字母表示同一组织部位不同基因间差异显著(P<0. 05)。

    Figure  3.  qRT-PCR on NtFTs in different tissues

    Datas with different lowercase letters indicate significant differences between different gene in same tissue (P<0.05).

    图  4  NtFT在中国水仙花芽不同分化阶段的表达分析

    不同小写字母表示同一发育时间不同基因差异显著(P<0. 05)。

    Figure  4.  qRT-PCR on NtFTs from N. tazetta during flower buds at differentiation stages

    Datas with different lowercase letters indicate significant differences between genes at same development time (P<0.05).

    图  5  NtFT基因在拟南芥的异位表达

    A:过表达NtFT基因拟南芥开花情况;B:过表达 NtFT 基因拟南芥开花性状数据。*、**表示与WT相比差异显著(P<0.05)或极显著(P<0.01)。图6同。

    Figure  5.  Ectopic expressions of NtFTs in A. thaliana

    A: Flowering of A. thaliana with overexpressed NtFT; B: Flowering traits data of A. thaliana with overexpressed NtFT; * and ** indicate significant difference(P<0.05) and (P<0.01), respectively. Same for Fig. 6.

    图  6  转基因拟南芥中AtLFYAtSOC1AtAP1的表达分析

    Figure  6.  Expressions of AtLFY, AtSOC1, and AtAP1 in transgenic plants

    表  1  克隆中国水仙NtFT基因引物

    Table  1.   Primers for cloning NtFT of N. tazetta

    引物名称
    Primer name
    上游引物序列(5′-3′)
    Upstream primer sequence (5′-3′)
    下游引物序列(5′-3′)
    Downstream primer sequence (5′-3′)
    NtFT1 TTTCCGCTTATATCTCTTCTGGGAC TCGGGAAGTAGCAAGACGATCAAAC
    NtFT2 ATGTTGAGAGAGAGGGTACC TCAGCAAAGTCCTGAGAACCTTCTT
    NtFT3 GAAGTAGTCATGTTGAGAGAGAGG GTATCACATATTGCATGGCTTAGG
    NtFT4 GGTTAAGAGACAGAATGCCGAT TTTATGTCATTTATCGTCTG CTAG
    下载: 导出CSV

    表  2  FT基因表达qRT-PCR引物

    Table  2.   Primers for qRT-PCR of FT gene

    引物名称
    Primer name
    上游引物序列(5’-3’)
    Upstream primer sequence (5′-3′)
    上游引物序列(5’-3’)
    Downstream primer sequence (5′-3′)
    NtActin GTTGACCCACCACTAAGAACAATG TGCCCAGAAGTGCTATTCCAG
    QNtFT1 CCAGCCAAAGGTTGAAGTCG CCCTGTGGTTCCTGGTATG
    QNtFT2 CTTATGAGAGCCCTCGAACACC CGCACACAGTTTGTTGAACTTCC
    QNtFT3 CGCACACAGTTTGTTGAACTTCC CACTGGTTGGTGACAGACATACC
    QNtFT4 TGGCAGGATGCGATGCAAGA CACGATGCGATGAATCCCCGA
    下载: 导出CSV

    表  3  pSAK277表达载体构建引物

    Table  3.   Primers for constructing pSAK277 expression vector

    引物名称
    Primer name
    上游引物序列(5′-3′)
    Upstream primer sequence (5′-3′)
    下游引物序列(5′-3′)
    Upstream primer sequence (5′-3′)
    277NtFT1 ACTAGTGGATCCAAAGAATTCATGA
    GTAGGGATCCTTTGGTTATTG
    AGAAGTACTCTCGAGAAGCTT
    TTAGGGGTACATCCTCCGGCCACCA
    277NtFT2 ACTAGTGGATCCAAAGAATTCAGTTGA
    GAGAGAGGGTACCAAGGG
    AGAAGTACTCTCGAGAAGCTTT
    CAGCAAAGTCCTGAGAACCTTCTT
    277NtFT3 ACTAGTGGATCCAAAGAATTC
    ATGTTGAGAG AGAGGGTACC
    AGAAGTACTCTCGAGAAGCTT
    TCACATATTG CATGGCTTAG
    277NtFT4 ACTAGTGGATCCAAAGAATTCAT
    GCCGATACTGGGACAAGT
    AGAAGTACTCTCGAGAAGCTTTC
    AGAACCTTCTTCCTCCGCA
    下载: 导出CSV

    表  4  转基因拟南芥的不同基因qRT-PCR引物

    Table  4.   Primers for qRT-PCR of different genes in transgenic A. thaliana

    引物名称
    Primer name
    上游引物序列(5’-3’)
    Upstream primer sequence (5′-3′)
    上游引物序列(5’-3’)
    Upstream primer sequence (5′-3′)
    Actin GCTGAGAGTTGATGGTGTGCT GGATACCCTTTCGCAGATAGAG
    AtLFY GTTAGGTTTTACGGCGAGCA GCAATCGTCTCCGTTCAGC
    AtAP1 ACCAAATCCAGCATCCTTACA TCAAGAGTCAGTTCGAGATCATTC
    AtSOC1 CTCTCAGTGCTTTGTGATGCT CGATTGAGCATGTTCCTATGCC
    下载: 导出CSV
  • [1] FORNARA F, DE MONTAIGU A, COUPLAND G. SnapShot: Control of flowering in Arabidopsis [J]. Cell, 2010, 141(3): 550−550.e2. doi: 10.1016/j.cell.2010.04.024
    [2] 张艺能, 周玉萍, 陈琼华, 等. 拟南芥开花时间调控的分子基础 [J]. 植物学报, 2014, 49(4):469−482. doi: 10.3724/SP.J.1259.2014.00469

    ZHANG Y N, ZHOU Y P, CHEN Q H, et al. Molecular basis of flowering time regulation in Arabidopsis [J]. Chinese Bulletin of Botany, 2014, 49(4): 469−482.(in Chinese) doi: 10.3724/SP.J.1259.2014.00469
    [3] KARLGREN A, GYLLENSTRAND N, KÄLLMAN T, et al. Evolution of the PEBP gene family in plants: Functional diversification in seed plant evolution [J]. Plant Physiology, 2011, 156(4): 1967−1977. doi: 10.1104/pp.111.176206
    [4] BANFIELD M J, BARKER J J, PERRY A C, et al. Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction [J]. Structure, 1998, 6(10): 1245−1254. doi: 10.1016/S0969-2126(98)00125-7
    [5] VALVERDE F, MOURADOV A, SOPPE W, et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering [J]. Science, 2004, 303(5660): 1003−1006. doi: 10.1126/science.1091761
    [6] 张乔松, 杨伟儿. 中国水仙花芽分化及贮藏期外界因子对花序数的影响 [J]. 园艺学报, 1987, 14(2):139−143,145.

    ZHANG Q S, YANG W E. On flower-bud differentiation of Chinese narcissus and the effect of external factors in storage on flower percentage [J]. Acta Horticulturae Sinica, 1987, 14(2): 139−143,145.(in Chinese)
    [7] 申艳红, 姜涛, 赵湾湾, 等. 乙烯处理水仙催多花技术和机理的研究 [J]. 农业生物技术学报, 2019, 27(6):1003−1015.

    SHEN Y H, JIANG T, ZHAO W W, et al. Study on technology and mechanism of ethylene treatment promotes the formation of more flowers of Narcissus tazetta var. chinensis [J]. Journal of Agricultural Biotechnology, 2019, 27(6): 1003−1015.(in Chinese)
    [8] ODA A, NARUMI T, LI T P, et al. CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums [J]. Journal of Experimental Botany, 2012, 63(3): 1461−1477. doi: 10.1093/jxb/err387
    [9] MAO Y C, SUN J, CAO P P, et al. Functional analysis of alternative splicing of the FLOWERING LOCUS T orthologous gene in Chrysanthemum morifolium [J]. Horticulture Research, 2016, 3: 16058. doi: 10.1038/hortres.2016.58
    [10] WANG L J, SUN J, REN L P, et al. CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer chrysanthemum [J]. Plant Biotechnology Journal, 2020, 18(7): 1562−1572. doi: 10.1111/pbi.13322
    [11] SUN J, WANG H, REN L P, et al. CmFTL2 is involved in the photoperiod- and sucrose-mediated control of flowering time in chrysanthemum [J]. Horticulture Research, 2017, 4: 17001. doi: 10.1038/hortres.2017.1
    [12] OTAGAKI S, OGAWA Y, HIBRAND-SAINT OYANT L, et al. Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses [J]. Plant Biology, 2015, 17(4): 808−815. doi: 10.1111/plb.12299
    [13] CHEN L, CAI Y P, QU M N, et al. Soybean adaption to high-latitude regions is associated with natural variations of GmFT2b, an ortholog of FLOWERING LOCUS T [J]. Plant, Cell & Environment, 2020, 43(4): 934−944.
    [14] WU L, LI F, DENG Q H, et al. Identification and characterization of the FLOWERING LOCUS T/terminal flower 1 gene family in petunia [J]. DNA and Cell Biology, 2019, 38(9): 982−995. doi: 10.1089/dna.2019.4720
    [15] HELLER W P, YING Z T, DAVENPORT T L, et al. Identification of members of the Dimocarpus longan flowering locus T gene family with divergent functions in flowering [J]. Tropical Plant Biology, 2014, 7(1): 19−29. doi: 10.1007/s12042-013-9134-0
    [16] COELHO C P, MINOW M A A, CHALFUN-JÚNIOR A, et al. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis [J]. Frontiers in Plant Science, 2014, 5: 221.
    [17] NAVARRO C, ABELENDA J A, CRUZ-ORÓ E, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T [J]. Nature, 2011, 478(7367): 119−122. doi: 10.1038/nature10431
    [18] NIWA M, DAIMON Y, KUROTANI K I, et al. BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis [J]. The Plant Cell, 2013, 25(4): 1228−1242. doi: 10.1105/tpc.112.109090
    [19] KINOSHITA T, ONO N, HAYASHI Y, et al. FLOWERING LOCUS T regulates stomatal opening [J]. Current Biology:CB, 2011, 21(14): 1232−1238. doi: 10.1016/j.cub.2011.06.025
    [20] CHEN M, PENFIELD S. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time [J]. Science, 2018, 360(6392): 1014−1017. doi: 10.1126/science.aar7361
    [21] ANDRÉ D, MARCON A, LEE K C, et al. FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees [J]. Current Biology:CB, 2022, 32(13): 2988−2996.e4. doi: 10.1016/j.cub.2022.05.023
    [22] 陈洁. 水稻FT-Like基因OsFTL4的功能研究[D]. 扬州: 扬州大学, 2020.

    CHEN J. Function research of FT-like gene OsTTL4 in rice [D]. Yangzhou: Yangzhou University, 2020. (in Chinese)
    [23] FENG Y, ZHU L Y, PAN T F, et al. Characterization of summer dormancy in Narcissus tazetta var. Chinensis and the role of NtFTs in summer dormancy and flower differentiation [J]. Scientia Horticulturae, 2015, 183: 109−117. doi: 10.1016/j.scienta.2014.11.013
    [24] LI X F, JIA L Y, XU J, et al. FT-like NFT1 gene may play a role in flower transition induced by heat accumulation in Narcissus tazetta var. chinensis [J]. Plant and Cell Physiology, 2013, 54(2): 270−281. doi: 10.1093/pcp/pcs181
    [25] CONANT G C, WOLFE K H. Turning a hobby into a job: How duplicated genes find new functions [J]. Nature Reviews Genetics, 2008, 9(12): 938−950. doi: 10.1038/nrg2482
    [26] 李永光, 金玉环, 郭力, 等. 小鼠耳芥PEBP基因家族全基因组鉴定及表达分析 [J]. 遗传, 2022, 44(1):80−94.

    LI Y G, JIN Y H, GUO L, et al. Genome-wide identification and expression analysis of the PEBP genes in Arabidopsis pumila [J]. Hereditas(Beijing), 2022, 44(1): 80−94.(in Chinese)
    [27] 牛西强, 罗潇云, 康凯程, 等. 辣椒PEBP基因家族的全基因组鉴定、比较进化与组织表达分析 [J]. 园艺学报, 2021, 48(5):947−959.

    NIU X Q, LUO X Y, KANG K C, et al. Genome-wide identification, comparative evolution and expression analysis of PEBP gene family from Capsicum annuum [J]. Acta Horticulturae Sinica, 2021, 48(5): 947−959.(in Chinese)
    [28] JIANG X D, ZHONG M C, DONG X, et al. Rosoideae-specific duplication and functional diversification of FT-like genes in Rosaceae [J]. Horticulture Research, 2022, 9: uhac059. doi: 10.1093/hr/uhac059
    [29] LIU H L, LIU X, CHANG X J, et al. Large-scale analyses of angiosperm Flowering Locus T genes reveal duplication and functional divergence in monocots [J]. Frontiers in Plant Science, 2023, 13: 1039500. doi: 10.3389/fpls.2022.1039500
    [30] LEEGGANGERS H A, ROSILIO-BRAMI T, BIGAS-NADAL J, et al. Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control [J]. Plant and Cell Physiology, 2018, 59(1): 90−106. doi: 10.1093/pcp/pcx164
    [31] LEE R, BALDWIN S, KENEL F, et al. FLOWERING LOCUS T genes control onion bulb formation and flowering [J]. Nature Communications, 2013, 4: 2884. doi: 10.1038/ncomms3884
    [32] YAN X, CAO Q Z, HE H B, et al. Functional analysis and expression patterns of members of the FLOWERING LOCUS T (FT) gene family in Lilium [J]. Plant Physiology and Biochemistry, 2021, 163: 250−260. doi: 10.1016/j.plaphy.2021.03.056
    [33] KOTODA N, HAYASHI H, SUZUKI M, et al. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus ×domestica borkh. ) [J]. Plant and Cell Physiology, 2010, 51(4): 561−575. doi: 10.1093/pcp/pcq021
    [34] 朱燕宇. 小叶杨FT基因家族的克隆及功能验证[D]. 南京: 南京林业大学, 2015.

    ZHU Y Y. Cloning and functional analysis of FT gene family from Populus simonii[D]. Nanjing: Nanjing Forestry University, 2015. (in Chinese)
    [35] PIN P A, NILSSON O. The multifaceted roles of FLOWERING LOCUS T in plant development [J]. Plant, Cell & Environment, 2012, 35(10): 1742−1755.
    [36] LIU W, JIANG B J, MA L M, et al. Functional diversification of Flowering Locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation [J]. The New Phytologist, 2018, 217(3): 1335−1345. doi: 10.1111/nph.14884
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  183
  • HTML全文浏览量:  86
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-12
  • 修回日期:  2023-11-02
  • 网络出版日期:  2024-01-06
  • 刊出日期:  2023-12-28

目录

    /

    返回文章
    返回