• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北低丘陵山区人工林土壤微生物生物量碳氮变化及其影响因素

庄静静 鲜靖苹 王晓冰 李振华 程翠

庄静静,鲜靖苹,王晓冰,等. 华北低丘陵山区人工林土壤微生物生物量碳氮变化及其影响因素 [J]. 福建农业学报,2023,38(12):1459−1465 doi: 10.19303/j.issn.1008-0384.2023.12.010
引用本文: 庄静静,鲜靖苹,王晓冰,等. 华北低丘陵山区人工林土壤微生物生物量碳氮变化及其影响因素 [J]. 福建农业学报,2023,38(12):1459−1465 doi: 10.19303/j.issn.1008-0384.2023.12.010
ZHUANG J J, XIAN J P, WANG X B, et al. Microbial Biomass Carbon and Nitrogen at Man-made Forests in Northern China Hilly Areas [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1459−1465 doi: 10.19303/j.issn.1008-0384.2023.12.010
Citation: ZHUANG J J, XIAN J P, WANG X B, et al. Microbial Biomass Carbon and Nitrogen at Man-made Forests in Northern China Hilly Areas [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1459−1465 doi: 10.19303/j.issn.1008-0384.2023.12.010

华北低丘陵山区人工林土壤微生物生物量碳氮变化及其影响因素

doi: 10.19303/j.issn.1008-0384.2023.12.010
基金项目: 河南省自然科学基金项目(212300410219);河南省科技攻关项目(232102111008、232102321054));河南省高等学校重点科研项目(22B180014)
详细信息
    作者简介:

    庄静静(1988 —),女,博士,讲师,主要从事森林生态学相关研究,E-mail:zhuangjingnd@126.com

    通讯作者:

    程翠(1985 —),女,助理研究员,主要从事农业生态环境修复相关研究,E-mail:66394564@qq.com

  • 中图分类号: S714

Microbial Biomass Carbon and Nitrogen at Man-made Forests in Northern China Hilly Areas

  • 摘要:   目的  土壤微生物是土壤中重要的存在,土壤中的微生物量碳和微生物量氮能直接或间接参与土壤理化过程,是维持土壤质量的重要指标,可综合反映土壤肥力特性和生物活性。  方法  在河南省济源市黄河小浪底生态系统定位站内选择3种人工纯林,包括刺槐(Robinia pseudoacacia)林、栓皮栎(Quercus variabilis)林和侧柏(Platyclodus orientalis)林,采集未分解枯落物层(L层)、半分解/腐殖化枯落物层(F/H层)以及矿质土层(0~10、10~20 cm)的土壤样品,测定微生物生物量碳(Microbial biomass carbon, MBC)、微生物生物量氮(Microbial biomass nitrogen, MBN)、MBC/MBN以及枯落物层和土壤层总碳(Total carbon, TC)、总氮(Total nitrogen, TN)、可溶性有机碳(Dissolved organic carbon, DOC)和可溶性有机氮(Dissolved organic nitrogen, DON),研究探讨土壤微生物生物量(Soil microbial biomass, SMB)与树种、土深的关系及其机理。  结果  (1)在枯落物层,3种林型的TC最高值均出现在F/H层,而TN的最高值则均出现在L层;3种林型TC和TN均表现为F/H层>L层>0~10 cm、10~20 cm土层,差异显著(P<0.05)。3种林型的DOC表现为枯落物层高于矿质土壤层,DON为矿质土壤层高于枯落物层。枯落物层3种林分之间的DOC含量均表现为栓皮栎林显著高于刺槐林,二者与侧柏林之间差异不显著(P>0.05)。(2)在枯落物层,3种林型的MBC均表现为F/H层高于L层,表现为刺槐林>栓皮栎林>侧柏林。在矿质土层中,3种林型的MBC均为0~10 cm高于10~20 cm土层,表现为栓皮栎林>刺槐林>侧柏林,同一土层的刺槐林和栓皮栎林之间差异不显著(P>0.05)。枯落物层及矿质土层的MBN均表现为栓皮栎林>刺槐林>侧柏林。栓皮栎林在各个土层中均是MBN最高的树种,且与侧柏林之间差异显著(P<0.05)。(3)L和F/H层的MBC/MBN比值相差不大,而在矿质土层中,随土深增加MBC/MBN呈上升趋势。在矿质土层,3种林型MBC/MBN均表现为10~20 cm显著高于0~10 cm;在0~10 cm,3种林型之间差异不显著(P>0.05),在10~20 cm,刺槐林显著高于侧柏林(P>0.05),而与栓皮栎林之间差异不显著(P<0.05)。(4)相关性分析表明,3种林型的MBC均与总碳、总氮呈极显著正相关(P<0.01),其中栓皮栎林MBC与总碳的相关系数最大,为0.959。刺槐林和栓皮栎林的C/N与总碳、总氮呈负相关,而侧柏林的C/N则与总碳、总氮呈正相关,相关系数分别为0.512和0.524。  结论  在华北低丘陵山区种植栓皮栎对土壤的生态恢复效果较好,更有利于生态系统的碳氮循环。
  • 图  1  不同林分及土层/枯落物层总碳、总氮、可溶性有机碳和可溶性有机氮的变化特征

    不同小写字母表示同一土层/枯落物层不同林型之间差异显著(P<0.05),不同大写字母表示同一林型不同土层/枯落物层之间差异显著(P<0.05),下同。

    Figure  1.  Changes in TC, TN, DOC and DON at test sites

    Data with different lowercase letters indicate significant difference between different forests on same soil or littered layer (P<0.05); those with different uppercase letters, significant difference between different layers at same forest (P<0.05).

    图  2  不同林型枯落物层及土壤层的微生物生物量碳

    Figure  2.  MBC in littered and mineral soil layers at different forests

    图  3  不同林型枯落物层及土壤层的微生物生物量氮

    Figure  3.  MBN in littered and mineral soil layers at different forests

    图  4  不同林型枯落物层及土壤层的微生物生物量碳氮比

    Figure  4.  C/N ratio of microbial biomass in littered and mineral soil layers at different forests

    表  1  样地基本情况

    Table  1.   Basic information on sampling sites

    林型
    Forest type
    林龄
    Stand age/a
    坡向
    Aspect
    坡度
    Slope/(°)
    平均树高
    Mean tree height/m
    平均胸径
    Mean breast diameter/cm
    林分密度
    Stand density/(株·hm−2
    郁闭度
    Canopy density
    刺槐纯林R45南坡209.66±0.5711.35±0.671800±1000.82±0.02
    栓皮栎纯林Q43南坡238.75±0.2510.78±0.301900±1000.86±0.06
    侧柏纯林P42北坡229.86±0.1610.64±0.522900±1000.90±0.04
    下载: 导出CSV

    表  2  土壤微生物生物量碳、氮及其比值与理化性质相关性分析

    Table  2.   Correlation between MBC, MBN, MBC/MBN, and physiochemical properties of soil

    林型
    Forest
    type
    指标
    Index
    总碳
    Total
    carbon
    总氮
    Total
    nitrogen
    可溶性
    有机碳
    Dissolved
    organic
    carbon
    可溶性
    有机氮
    Dissolved
    organic
    nitrogen
    刺槐
    林R
    MBC0.941**0.957**0.1690.120
    MBN0.750**0.750**0.3890.142
    MBC/MBN−0.255−0.254−0.594*0.011
    栓皮
    栎林Q
    MBC0.959**0.950**0.3210.293
    MBN0.778**0.744**0.4500.442
    MBC/MBN−0.307−0.279−0.607*−0.381
    侧柏
    林P
    MBC0.912**0.892**−0.043−0.095
    MBN0.681*0.655*−0.2280.188
    MBC/MBN0.5120.5240.425−0.630*
    *表示在0.05水平上呈显著相关,**表示在0.01水平上呈极显著相关。
    *indicates significant difference at P<0.05; **indicates extremely significant difference at P<0.01.
    下载: 导出CSV
  • [1] 丁新景, 敬如岩, 黄雅丽, 等. 基于高通量测序的4种不同树种人工林根际土壤细菌结构及多样性 [J]. 林业科学, 2018, 54(1):81−89.

    DING X J, JING R Y, HUANG Y L, et al. Bacterial structure and diversity of rhizosphere soil of four tree species in Yellow River Delta based on high-throughput sequencing [J]. Scientia Silvae Sinicae, 2018, 54(1): 81−89.(in Chinese)
    [2] 吴迪, 李良良, 张红军, 等. 马缨杜鹃的花叶凋落物配比对土壤微生物量与酶活性的影响 [J]. 西南农业学报, 2021, 34(8):1663−1667.

    WU D, LI L L, ZHANG H J, et al. Effects of litter proportion of flowers and leaves of Rhododendron delavayi on soil microbial quantity and enzyme activity [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(8): 1663−1667.(in Chinese)
    [3] 刘放, 吴明辉, 魏培洁, 等. 疏勒河源高寒草甸土壤微生物生物量碳氮变化特征 [J]. 生态学报, 2020, 40(18):6416−6426.

    LIU F, WU M H, WEI P J, et al. Variations of soil microbial biomass carbon and nitrogen in alpine meadow of the Shule River headwater region [J]. Acta Ecologica Sinica, 2020, 40(18): 6416−6426.(in Chinese)
    [4] 任江波, 李钠钾, 秦平伟, 等. 不同覆盖材料对土壤理化性状和微生物量碳氮含量的影响 [J]. 西南农业学报, 2018, 31(10):2140−2145.

    REN J B, LI N J, QIN P W, et al. Effect of different mulching materials on physical and chemical characteristics of soil and microbial biomass [J]. Southwest China Journal of Agricultural Sciences, 2018, 31(10): 2140−2145.(in Chinese)
    [5] BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome [J]. Nature, 2018, 560(7717): 233−237. doi: 10.1038/s41586-018-0386-6
    [6] 罗明霞, 胡宗达, 刘兴良, 等. 川西亚高山不同林龄粗枝云杉人工林土壤微生物生物量及酶活性 [J]. 生态学报, 2021, 41(14):5632−5642.

    LUO M X, HU Z D, LIU X L, et al. Characteristics of soil microbial biomass carbon, nitrogen and enzyme activities in Picea asperata plantations with different ages in subalpine of western Sichuan, China [J]. Acta Ecologica Sinica, 2021, 41(14): 5632−5642.(in Chinese)
    [7] 刘宝, 吴文峰, 林思祖, 等. 中亚热带4种林分类型土壤微生物生物量碳氮特征及季节变化 [J]. 应用生态学报, 2019, 30(6):1901−1910.

    LIU B, WU W F, LIN S Z, et al. Characteristics of soil microbial biomass carbon and nitrogen and its seasonal dynamics in four mid-subtropical forests [J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1901−1910.(in Chinese)
    [8] 柳杨, 何先进, 侯恩庆. 鼎湖山森林演替和海拔梯度上的土壤微生物生物量碳氮变化 [J]. 生态学杂志, 2017, 36(2):287−294.

    LIU Y, HE X J, HOU E Q. Changes in microbial biomass carbon and nitrogen in forest floor litters and mineral soils along forest succession and altitude gradient in subtropical China [J]. Chinese Journal of Ecology, 2017, 36(2): 287−294.(in Chinese)
    [9] 李万年, 黄则月, 赵春梅, 等. 望天树人工幼林土壤微生物量碳氮及养分特征 [J]. 北京林业大学学报, 2020, 42(12):51−62.

    LI W N, HUANG Z Y, ZHAO C M, et al. Characteristics of soil microbial biomass C, N and nutrients in young plantations of Parashorea chinensis [J]. Journal of Beijing Forestry University, 2020, 42(12): 51−62.(in Chinese)
    [10] 董敏慧, 张良成, 文丽, 等. 松树-樟树混交林、纯林土壤微生物量碳、氮及多样性特征研究 [J]. 中南林业科技大学学报, 2017, 37(11):146−153.

    DONG M H, ZHANG L C, WEN L, et al. Soil microbial biomass C, N and diversity characteristics in pure and mixed forest of Pinus and Cinnamomun [J]. Journal of Central South University of Forestry & Technology, 2017, 37(11): 146−153.(in Chinese)
    [11] 李泽东, 李亦然, 周晓莹, 等. 3种华北石质山区造林树种抗旱性评价 [J]. 中国水土保持科学, 2019, 17(5):100−109.

    LI Z D, LI Y R, ZHOU X Y, et al. Drought resistance evaluation of three afforestation tree species in lithoid hilly area of North China [J]. Science of Soil and Water Conservation, 2019, 17(5): 100−109.(in Chinese)
    [12] 赵娜, 孟平, 张劲松, 等. 华北低丘山地不同土地利用条件下的土壤呼吸比较 [J]. 林业科学, 2014, 50(2):1−7.

    ZHAO N, MENG P, ZHANG J S, et al. Comparison of soil respiration under various land uses in hilly area of northern China [J]. Scientia Silvae Sinicae, 2014, 50(2): 1−7.(in Chinese)
    [13] 庄静静, 张劲松, 孟平, 等. 非生长季刺槐林土壤CH4通量的变化特征及其影响因子 [J]. 林业科学研究, 2016, 29(2):274−282.

    ZHUANG J J, ZHANG J S, MENG P, et al. Change of soil CH4 fluxes of Robinia pseudoacacia stand during non-growing season and the impact factors [J]. Forest Research, 2016, 29(2): 274−282.(in Chinese)
    [14] 同小娟, 张劲松, 孟平. 基于涡度相关法的森林生态系统碳交换及其控制机制 [J]. 温带林业研究, 2018, 1(2):1−9,14.

    TONG X J, ZHANG J S, MENG P. Carbon exchange between forest ecosystems and the atmosphere and its control mechanisms based on the eddy covariance method [J]. Journal of Temperate Forestry Research, 2018, 1(2): 1−9,14.(in Chinese)
    [15] 赵娜. 太行山南段低丘区不同土地利用方式土壤碳通量组成及其影响机理[D]. 北京: 中国林业科学研究院, 2014

    ZHAO N. The components and influence mechanism of soil carbon flux under different land use types in hilly area of southern Taihang Mountains, China[D]. Beijing: Chinese Academy of Forestry, 2014. (in Chinese)
    [16] 庄静静. 华北低山丘陵区刺槐林土壤甲烷通量变化特征及其影响机制[D]. 北京: 中国林业科学研究院, 2016

    ZHUANG J J. The characteristics and influencing mechanism of methane fluxes from Robinia pseudoacacia forest in the hilly area of North China[D]. Beijing: Chinese Academy of Forestry, 2016. (in Chinese)
    [17] 陈美玲, 刘鑫, 陈新峰, 等. 酸雨类型转变对杉木林土壤养分特征和微生物量碳氮的影响 [J]. 浙江农林大学学报, 2022, 39(6):1278−1288.

    CHEN M L, LIU X, CHEN X F, et al. Effects of acid rain type change on soil nutrient characteristics and microbial C and N in the Cunninghamia lanceolata plantation [J]. Journal of Zhejiang A & F University, 2022, 39(6): 1278−1288.(in Chinese)
    [18] 肖好燕, 刘宝, 余再鹏, 等. 亚热带典型林分对表层和深层土壤可溶性有机碳、氮的影响 [J]. 应用生态学报, 2016, 27(4):1031−1038.

    XIAO H Y, LIU B, YU Z P, et al. Effects of forest types on soil dissolved organic carbon and nitrogen in surface and deep layers in subtropical region, China [J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1031−1038.(in Chinese)
    [19] 李洪杰, 刘军伟, 杨林, 等. 海拔梯度模拟气候变暖对高山森林土壤微生物生物量碳氮磷的影响 [J]. 应用与环境生物学报, 2016, 22(4):599−605.

    LI H J, LIU J W, YANG L, et al. Effects of simulated climate warming on soil microbial biomass carbon, nitrogen and phosphorus of alpine forest [J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(4): 599−605.(in Chinese)
    [20] 张海燕, 张旭东, 李军, 等. 土壤微生物量测定方法概述 [J]. 微生物学杂志, 2005, 25(4):95−99.

    ZHANG H Y, ZHANG X D, LI J, et al. Outline of soil microbial biomass measurement methods [J]. Journal of Microbiology, 2005, 25(4): 95−99.(in Chinese)
    [21] 吴明辉, 瞿德业, 李婷, 等. 祁连山疏勒河源区冻土退化对土壤微生物生物量碳氮的影响 [J]. 地理科学, 2021, 41(1):177−186.

    WU M H, QU D Y, LI T, et al. Effects of permafrost degradation on soil microbial biomass carbon and nitrogen in the Shule River headwaters, the Qilian Mountains [J]. Scientia Geographica Sinica, 2021, 41(1): 177−186.(in Chinese)
    [22] 南雅芳, 郭胜利, 张彦军, 等. 坡向和坡位对小流域梯田土壤有机碳、氮变化的影响 [J]. 植物营养与肥料学报, 2012, 18(3):595−601.

    NAN Y F, GUO S L, ZHANG Y J, et al. Effects of slope aspect and position on soil organic carbon and nitrogen of terraces in small watershed [J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 595−601.(in Chinese)
    [23] 王风芹, 田丽青, 桑玉强, 等. 华北土石山区刺槐和栓皮栎人工林土壤微生物数量和微生物量碳、氮研究 [J]. 林业科学研究, 2016, 29(6):956−961.

    WANG F Q, TIAN L Q, SANG Y Q, et al. Studies on soil microorganism quantity and soil microbial biomass carbon and nitrogen of Robinia pseudoacacia and Quercus varaibilis plantations in North China [J]. Forest Research, 2016, 29(6): 956−961.(in Chinese)
    [24] 李胜蓝, 方晰, 项文化, 等. 湘中丘陵区4种森林类型土壤微生物生物量碳氮含量 [J]. 林业科学, 2014, 50(5):8−16.

    LI S L, FANG X, XIANG W H, et al. Soil microbial biomass carbon and nitrogen concentrations in four subtropical forests in hilly region of central Hunan Province, China [J]. Scientia Silvae Sinicae, 2014, 50(5): 8−16.(in Chinese)
    [25] 黄辉, 陈光水, 谢锦升, 等. 土壤微生物生物量碳及其影响因子研究进展 [J]. 湖北林业科技, 2008, 37(4):34−41. doi: 10.3969/j.issn.1004-3020.2008.04.011

    HUANG H, CHEN G S, XIE J S, et al. Advances on soil microbial biomass carbon and its effect factor [J]. Hubei Forestry Science and Technology, 2008, 37(4): 34−41.(in Chinese) doi: 10.3969/j.issn.1004-3020.2008.04.011
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  100
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-07
  • 修回日期:  2023-06-18
  • 网络出版日期:  2023-11-20
  • 刊出日期:  2023-12-28

目录

    /

    返回文章
    返回