• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤真菌群落特征对长期玉米秸秆还田方式的响应

张巩亮 徐莹莹 王宇先 杨慧莹 高盼 王晨 赵蕾

张巩亮,徐莹莹,王宇先,等. 土壤真菌群落特征对长期玉米秸秆还田方式的响应 [J]. 福建农业学报,2023,38(12):1466−1477 doi: 10.19303/j.issn.1008-0384.2023.12.011
引用本文: 张巩亮,徐莹莹,王宇先,等. 土壤真菌群落特征对长期玉米秸秆还田方式的响应 [J]. 福建农业学报,2023,38(12):1466−1477 doi: 10.19303/j.issn.1008-0384.2023.12.011
ZHANG G L, XU Y Y, WANG Y X, et al. Fungal Community in Soil Affected by Long-term Returning Maize Stover to Field [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1466−1477 doi: 10.19303/j.issn.1008-0384.2023.12.011
Citation: ZHANG G L, XU Y Y, WANG Y X, et al. Fungal Community in Soil Affected by Long-term Returning Maize Stover to Field [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1466−1477 doi: 10.19303/j.issn.1008-0384.2023.12.011

土壤真菌群落特征对长期玉米秸秆还田方式的响应

doi: 10.19303/j.issn.1008-0384.2023.12.011
基金项目: 黑龙江省省属科研院所科研业务费项目(CZKYF2022-1-C043);齐齐哈尔市科技计划创新激励项目(CNYGG2022040);黑龙江省科技计划省院科技合作项目(YS20B09);国家农业环境齐齐哈尔观测实验站(NAES058AE10)
详细信息
    作者简介:

    张巩亮(1998 — ),男,硕士,研究实习员,主要从事作物栽培与土壤肥料研究,E-mail:zhangl77haer@163.com

    通讯作者:

    徐莹莹(1989 — ),女,硕士,助理研究员,主要从事农业微生物研究,E-mail:ghdetongzhuo@163.com

  • 中图分类号: S154

Fungal Community in Soil Affected by Long-term Returning Maize Stover to Field

  • 摘要:   目的  探明玉米秸秆不同还田方式对黑龙江西部玉米产区土壤养分以及土壤真菌群落结构的影响。  方法  于2015—2021年,以玉米品种嫩单19为试验材料,采用随机区组试验设计,以秸秆不还田(CK)为对照,设置秸秆覆盖还田(CSR)、秸秆碎混还田(MSR)、秸秆深翻还田(PSR)、秸秆轮替还田(RSR)等4种秸秆还田方式处理。通过Illumina Miseq测序技术分析比较了不同秸秆还田方式及不同生育期对土壤环境中真菌群落结构及功能变化的环境驱动因子的影响。  结果  生长时期和秸秆还田方式及其互作效应对真菌群落多样性、结构组成及土壤化学性状均有显著或极显著影响。拔节期土壤真菌中占比较大的优势菌门主要为担子菌门(Basidiomycota)、子囊菌门(Ascomycota)和被孢霉门(Mortierellomycota),优势菌属为Tausonia、鬼伞属(Coprinellus)和Solicoccozyma;而吐丝期的优势菌门为子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和被孢霉门(Mortierellomycota),优势菌属为Tausonia、被孢霉属(Mortierella)和镰刀菌属(Fusarium)。RDA分析结果表明,硝态氮、速效磷和铵态氮是影响属分类水平下真菌群落结构组成的主要环境驱动因子。秸秆轮替还田、秸秆碎混还田和秸秆深翻还田处理产量分别较秸秆不还田处理提高3.92%、3.76%和1.97%。  结论  秸秆轮替还田较不还田处理有效增产3.92%,同时秸秆轮替还田在拔节期提高了土壤真菌丰富度指数,ASV数量也高于其他处理。同时,该还田方式下的青霉菌属(Penicillium)可以提高秸秆复合菌系对木质纤维素的降解,促进秸秆腐熟,秸秆轮替还田可在东北玉米产区推广应用。
  • 图  1  拔节期(A)和吐丝期(B)土壤真菌ASV分布韦恩图

    A、B、C、D、E、F、G、H、I、J分别代表拔节期CSR、拔节期MSR、拔节期PSR、拔节期RSR、拔节期CK、吐丝期CSR、吐丝期MSR、吐丝期PSR、吐丝期RSR、吐丝期CK。下同。

    Figure  1.  Venn diagram of soil fungal ASV distribution at maize jointing stage (A) and silking stage (B)

    A, B, C, D, E, F, G, H, I, and J represent jointing CSR, jointing MSR, jointing PSR, jointing RSR, jointing CK, silking CSR, silking MSR, silking PSR, silking RSR, and silking CK, respectively. Same for below.

    图  2  拔节期门分类水平下(A)和属分类水平下(B)真菌群落的相对丰度及组成

    Figure  2.  Relative abundance and composition of fungal community at phylum level (A) and genus level (B) during maize joining stage

    图  3  吐丝期门分类水平下(A)和属分类水平下(B)真菌群落的相对丰度及组成

    Figure  3.  Relative abundance and composition of fungal community at phylum level (A) and genus level (B) during maize silking stage

    图  4  拔节期(A)和吐丝期(B)ASV水平下真菌群落组成的PCOA分析

    Figure  4.  PCOA analysis on fungal community at ASV level at maize jointing stage (A) and silking stage (B)

    图  5  拔节期(A)和吐丝期(B)土壤真菌LDA值分析

    Figure  5.  Analysis on LDA of soil fungi at maize jointing stage (A) and silking stage (B)

    图  6  土壤环境因子与真菌群落的关联热图

    Figure  6.  Heat map on relationship between environmental factors and fungal community in soil

    图  7  土壤环境因子与真菌群落的RDA分析

    OC,有机碳;TN,全氮;AN,氨态氮;NN,硝态氮;AP,速效磷;AK,速效钾。

    Figure  7.  RDA analysis on environmental factors and fungal community in soil

    OC: Organic carbon; TN: total nitrogen; AN: ammonia nitrogen; NN: nitrate nitrogen; AP: available phosphorus; AK: available kalium.

    图  8  土壤真菌群落功能预测结果

    Figure  8.  Predicted functions of fungi in soil

    图  9  秸秆不同还田方式对玉米产量的影响

    Figure  9.  Effect of different straw-returning methods on maize yield

    表  1  秸秆还田具体方式

    Table  1.   Stover-returning methods

    秸秆还田方式
    Straw return method
    具体操作
    Specific operation
    秸秆覆盖还田(CSR)玉米机械化收获抛撒秸秆→翌年春季播种前秸秆二次粉碎→免耕播种。
    秸秆碎混还田(MSR)玉米机械化收获抛撒秸秆→深松、重耙秸秆碎混还田→翌年春季免耕播种。
    秸秆深翻还田(PSR)玉米机械化收获抛撒秸秆→秸秆二次粉碎→液压翻转犁翻埋秸秆还田、重耙→翌年春年免耕播种。
    秸秆轮替还田(RSR)前两年覆盖秸秆还田,第三年秸秆碎混还田,作业方式同上,三年为一个轮替周期。
    秸秆不还田(CK)玉米机械化收获→秸秆移除→翌年春季播种前旋耕灭茬→免耕播种。
    下载: 导出CSV

    表  2  土壤化学性质比较

    Table  2.   Chemical properties of soils

    时期
    Period
    方式
    Method
    有机碳
    Organic Carbon/
    (g·kg−1
    全氮
    Total Nitrogen/
    (g·kg−1
    铵态氮
    Ammonium Nitrogen/
    (mg·kg−1
    硝态氮
    Nitrate Nitrogen/
    (mg·kg−1
    速效磷
    Available Phosphorus/
    (mg·kg−1
    速效钾
    Available Kalium/
    (mg·kg−1
    拔节期
    Elongation
    CSR19.59 a1.69 b2.12 b307.33 a96.87 b277.33 a
    MSR16.22 b1.57 c2.19 b310.82 a93.40 b248.33 b
    PSR14.12 c1.39 d1.23 c113.88 b44.88 c157.33 c
    RSR19.18 a1.91 a3.04 a313.17 a103.31 a262.00 ab
    CK12.95 c1.21 e1.16 c94.59 b44.18 c150.00 c
    吐丝期
    Spinning
    CSR17.11 a1.57 b3.45 ab75.92 a51.48 d202.08 a
    MSR15.80 b1.57 b2.99 b68.03 b56.01 c166.42 b
    PSR15.64 b1.54 b2.49 b51.03 c58.67 b173.75 ab
    RSR16.89 a1.69 a4.51 a80.54 a65.27 a174.58 ab
    CK14.64 c1.51 b0.92 c37.55 d40.06 e155.25 b
    F
    F value
    FPeriod2.421.1925.27**2375.94**1034.04**103.97**
    FMethod47.76**69.82**25.13**295.10**522.42**55.90**
    FPeriod*Method12.25**26.92**2.87161.32**276.38**27.13**
    *和**分别表示在5 %和1 %水平显著性。下同。
    '*' and '**' indicate significance at 5% and 1% level, respectively. Same for below.
    下载: 导出CSV

    表  3  真菌群落丰富度、多样性和均匀度的比较

    Table  3.   Abundance, diversity, and uniformity of fungal communities

    时期
    Period
    方式
    Method
    丰富度指数
    Richness index
    多样性指数
    Diversity index
    均匀度指数
    Uniformity index
    Observed species指数
    Observed species index
    Chao指数
    Chao index
    Shannon指数
    Shannon index
    Simpson指数
    Simpson index
    Pielou指数
    Pielou index
    拔节期
    Elongation
    CSR373.10 b380.94 b3.92 c0.74 b0.46 bc
    MSR254.33 c259.49 c3.38 c0.72 b0.42 c
    PSR243.40 c247.08 c3.73 c0.77 b0.47 bc
    RSR470.73 a478.36 a4.70 b0.80 ab0.53 b
    CK458.87 a464.18 ab5.53 a0.92 a0.62 a
    吐丝期
    Spinning
    CSR475.47 a478.96 a6.42 a0.98 a0.72 a
    MSR331.57 b334.48 b4.58 b0.85 b0.55 b
    PSR226.97 c229.21 c3.26 c0.71 c0.42 c
    RSR445.17 a448.55 a6.08 a0.96 a0.69 a
    CK511.97 a515.68 a6.74 a0.98 a0.75 a
    F
    F value
    FPeriod5.54*4.46*61.02**26.90**71.06**
    FMethod36.30**34.56**41.51**13.21**34.59**
    FPeriod*Method2.462.2910.09**5.97**12.53**
    下载: 导出CSV

    表  4  土壤真菌各等级ASV物种统计结果

    Table  4.   Statistical ASV on fungal species in soil

    时期 Period方式 Method编号 Number门 Phylum纲 Class目 Order科 Family属 Genus种 Species
    拔节期
    Elongation
    CSRA4.011.730.358.091.796.3
    MSRB3.710.326.050.081.783.0
    PSRC4.311.728.048.074.072.0
    RSRD6.016.334.365.7116.7122.3
    CKE4.314.735.063.0103.7109.7
    吐丝期
    Spinning
    CSRF6.014.734.766.3116.7114.7
    MSRG6.013.333.056.394.088.7
    PSRH4.012.030.751.077.771.0
    RSRI7.016.334.060.0101.7106.7
    CKJ7.020.042.375.7122.3133.0
    下载: 导出CSV
  • [1] 鹿傲飞, 王玉斌. 黑龙江省玉米秸秆资源时空分布特征与资源化利用模式构建 [J]. 资源开发与市场, 2023, 39(1):16−20,119.

    LU A F, WANG Y B. Spatial-temporal distribution characteristics and construction of resource utilization model of maize straw resources in Heilongjiang Province [J]. Resource Development & Market, 2023, 39(1): 16−20,119.(in Chinese)
    [2] ZHAO J, DONG Z H, LI J F, et al. Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion [J]. Bioresource Technology, 2018, 266: 158−165. doi: 10.1016/j.biortech.2018.06.058
    [3] 张鑫, 青格尔, 高聚林, 等. 玉米秸秆低温降解复合菌的筛选及其菌种组成 [J]. 农业环境科学学报, 2021, 40(7):1565−1574. doi: 10.11654/jaes.2021-0057

    ZHANG X, QINGGEER, GAO J L, et al. Screening and composition of the microbial consortium with corn straw decomposition under low temperature [J]. Journal of Agro-Environment Science, 2021, 40(7): 1565−1574.(in Chinese) doi: 10.11654/jaes.2021-0057
    [4] 王丽娟, 刘丹, 徐永清, 等. 寒地玉米秸秆不同腐熟时期的理化性状及微生物多样性分析 [J]. 华北农学报, 2022, 37(5):132−139. doi: 10.7668/hbnxb.20193039

    WANG L J, LIU D, XU Y Q, et al. Analysis of physical and chemical characteristics and microbial diversity of corn straw in different maturity period in cold area [J]. Acta Agriculturae Boreali-Sinica, 2022, 37(5): 132−139.(in Chinese) doi: 10.7668/hbnxb.20193039
    [5] GÓMEZ-MUÑOZ B, JENSEN L S, MUNKHOLM L, et al. Long-term effect of tillage and straw retention in conservation agriculture systems on soil carbon storage [J]. Soil Science Society of America Journal, 2021, 85(5): 1465−1478. doi: 10.1002/saj2.20312
    [6] 殷文, 柴强, 于爱忠, 等. 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度及光合生理特性的影响 [J]. 中国农业科学, 2020, 53(23):4764−4776. doi: 10.3864/j.issn.0578-1752.2020.23.004

    YIN W, CHAI Q, YU A Z, et al. Effects of intercropped wheat straw retention on canopy temperature and photosynthetic physiological characteristics of intercropped maize mulched with plastic during grain filling stage [J]. Scientia Agricultura Sinica, 2020, 53(23): 4764−4776.(in Chinese) doi: 10.3864/j.issn.0578-1752.2020.23.004
    [7] 黄玉凡. 关于黑龙江省秸秆综合利用的调研与政策建议 [J]. 当代农村财经, 2015(3):45−48. doi: 10.3969/j.issn.1007-3604.2015.03.018

    HUANG Y F. Investigation and policy suggestions on comprehensive utilization of straw in Heilongjiang Province [J]. Contemporary Rural Finance and Economics, 2015(3): 45−48.(in Chinese) doi: 10.3969/j.issn.1007-3604.2015.03.018
    [8] 李盼, 陈桂平, 苟志文, 等. 绿洲灌区春小麦光能利用与水分生产效益对秸秆还田方式的响应 [J]. 作物学报, 2023, 49(5):1316−1326.

    LI P, CHEN G P, GOU Z W, et al. Response on light energy utilization and water production benefit of spring wheat to straw retention in an oasis irrigated area [J]. Acta Agronomica Sinica, 2023, 49(5): 1316−1326.(in Chinese)
    [9] 王钰祺, 任玉蓉, 廖安邦, 等. 盐城滨海滩涂湿地典型植物群落土壤微生物组成与结构特征 [J]. 生态学报, 2023, 43(6):2336−2347.

    WANG Y Q, REN Y R, LIAO A B, et al. Composition and structural characteristics of soil microbial communities in Yancheng typical coastal wetlands [J]. Acta Ecologica Sinica, 2023, 43(6): 2336−2347.(in Chinese)
    [10] 秦新政, 王玉苗, 王志慧, 等. 秸秆还田对棉田土壤养分和微生物多样性的影响 [J]. 新疆农业科学, 2022, 59(5):1236−1244. doi: 10.6048/j.issn.1001-4330.2022.05.024

    QIN X Z, WANG Y M, WANG Z H, et al. Effects of straw returning on soil nutrients and microbial diversity in cotton field [J]. Xinjiang Agricultural Sciences, 2022, 59(5): 1236−1244.(in Chinese) doi: 10.6048/j.issn.1001-4330.2022.05.024
    [11] 傅敏, 郝敏敏, 胡恒宇, 等. 土壤有机碳和微生物群落结构对多年不同耕作方式与秸秆还田的响应 [J]. 应用生态学报, 2019, 30(9):3183−3194.

    FU M, HAO M M, HU H Y, et al. Responses of soil organic carbon and microbial community structure to different tillage patterns and straw returning for multiple years [J]. Chinese Journal of Applied Ecology, 2019, 30(9): 3183−3194.(in Chinese)
    [12] 刘占锋, 傅伯杰, 刘国华, 等. 土壤质量与土壤质量指标及其评价 [J]. 生态学报, 2006, 26(3):901−913. doi: 10.3321/j.issn:1000-0933.2006.03.036

    LIU Z F, FU B J, LIU G H, et al. Soil quality: Concept, indicators and its assessment [J]. Acta Ecologica Sinica, 2006, 26(3): 901−913.(in Chinese) doi: 10.3321/j.issn:1000-0933.2006.03.036
    [13] 李玉洁, 王慧, 赵建宁, 等. 耕作方式对农田土壤理化因子和生物学特性的影响 [J]. 应用生态学报, 2015, 26(3):939−948.

    LI Y J, WANG H, ZHAO J N, et al. Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland: A review [J]. Chinese Journal of Applied Ecology, 2015, 26(3): 939−948.(in Chinese)
    [14] YIN T, ZHAO C X, YAN C R, et al. Inter-annual changes in the aggregate-size distribution and associated carbon of soil and their effects on the straw-derived carbon incorporation under long-term no-tillage [J]. Journal of Integrative Agriculture, 2018, 17(11): 2546−2557. doi: 10.1016/S2095-3119(18)61925-2
    [15] 董立国, 袁汉民, 李生宝, 等. 玉米免耕秸秆覆盖对土壤微生物群落功能多样性的影响 [J]. 生态环境学报, 2010, 19(2):444−446.

    DONG L G, YUAN H M, LI S B, et al. Influence on soil microbial community functional diversity for maize no-tillage with straw mulch [J]. Ecology and Environmental Sciences, 2010, 19(2): 444−446.(in Chinese)
    [16] 萨如拉, 杨恒山, 高聚林, 等. 西辽河平原区免耕秸秆还田方式对土壤微生物群落组成的影响 [J]. 土壤通报, 2022, 53(5):1067−1078.

    SA R L, YANG H S, GAO J L, et al. Effects of No tillage straw returning on soil microbial community composition in the West Liaohe plain [J]. Chinese Journal of Soil Science, 2022, 53(5): 1067−1078.(in Chinese)
    [17] 李春雅, 王炎伟, 王荣, 等. 秸秆还田方式对东北水稻土理化性质及微生物群落的影响 [J]. 微生物学报, 2022, 62(12):4811−4824.

    LI C Y, WANG Y W, WANG R, et al. Effect of straw returning method on physicochemical properties and microbial community of paddy soil in Northeast China [J]. Acta Microbiologica Sinica, 2022, 62(12): 4811−4824.(in Chinese)
    [18] URITSKIY G V, DIRUGGIERO J, TAYLOR J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis [J]. Microbiome, 2018, 6(1): 158. doi: 10.1186/s40168-018-0541-1
    [19] LIU D, KEIBLINGER K M, SCHINDLBACHER A, et al. Microbial functionality as affected by experimental warming of a temperate mountain forest soil—a metaproteomics survey [J]. Applied Soil Ecology, 2017, 117/118: 196−202. doi: 10.1016/j.apsoil.2017.04.021
    [20] 汪海静. 土壤微生物多样性的主要影响因素 [J]. 北方环境, 2011, 23(S1):90−91,118.

    WANG H J. The main affecting factors of soil microbial diversity [J]. Northern Environment, 2011, 23(S1): 90−91,118.(in Chinese)
    [21] DONG W Y, SI P F, LIU E K, et al. Influence of film mulching on soil microbial community in a rainfed region of northeastern China [J]. Scientific Reports, 2017, 7(1): 8468. doi: 10.1038/s41598-017-08575-w
    [22] 高洪军, 李强, 彭畅, 等. 不同轮作和秸秆还田方式对黑土细菌群落结构的影响 [J]. 吉林农业大学学报, 2022, 44(3):336−344. doi: 10.13327/j.jjlau.2021.1135

    GAO H J, LI Q, PENG C, et al. Effects of different crop rotation and straw returning methods on bacterial community structure in black soil [J]. Journal of Jilin Agricultural University, 2022, 44(3): 336−344.(in Chinese) doi: 10.13327/j.jjlau.2021.1135
    [23] LOU Y L, LIANG W J, XU M G, et al. Straw coverage alleviates seasonal variability of the topsoil microbial biomass and activity [J]. CATENA, 2011, 86(2): 117−120. doi: 10.1016/j.catena.2011.03.006
    [24] 徐蒋来, 尹思慧, 胡乃娟, 等. 周年秸秆还田对稻麦轮作农田土壤养分、微生物活性及产量的影响 [J]. 应用与环境生物学报, 2015, 21(6):1100−1105.

    XU J L, YIN S H, HU N J, et al. Effects of annual straw returning on soil nutrients, microbial activity and yield in a rice-wheat rotation system [J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(6): 1100−1105.(in Chinese)
    [25] BREULMANN M, MASYUTENKO N P, KOGUT B M, et al. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems [J]. The Science of the Total Environment, 2014, 497/498: 29−37. doi: 10.1016/j.scitotenv.2014.07.080
    [26] ESSEL E, LI L L, DENG C C, et al. Evaluation of bacterial and fungal diversity in a long-term spring wheat–field pea rotation field under different tillage practices [J]. Canadian Journal of Soil Science, 2018, 98(4): 619−637. doi: 10.1139/cjss-2017-0155
    [27] LENTENDU G, WUBET T, CHATZINOTAS A, et al. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: A multiple barcoding approach [J]. Molecular Ecology, 2014, 23(13): 3341−3355. doi: 10.1111/mec.12819
    [28] LIU Q W, WANG S X, LI K, et al. Responses of soil bacterial and fungal communities to the long-term monoculture of grapevine [J]. Applied Microbiology and Biotechnology, 2021, 105(18): 7035−7050. doi: 10.1007/s00253-021-11542-1
    [29] 罗曼, 吴旭东, 夏钰华, 等. 篮状菌DYM25胞外产物的初步鉴定及其生物学活性 [J]. 应用海洋学学报, 2022, 41(4):599−606. doi: 10.3969/J.ISSN.2095-4972.2022.04.005

    LUO M, WU X D, XIA Y H, et al. Preliminary identification of the extracellular product of Talaromyces sp. DYM25 and biological activity [J]. Journal of Applied Oceanography, 2022, 41(4): 599−606.(in Chinese) doi: 10.3969/J.ISSN.2095-4972.2022.04.005
    [30] MORRIS E F, MORTON F J, SMITH G. The Genera Scopulariopsis bainier, Microascus zukal, and Doratomyces corda [J]. Mycologia, 1963, 55(5): 690. doi: 10.2307/3756452
    [31] 张欣. 头束霉属和帚霉属的分类研究[D]. 贵阳: 贵州大学, 2020.

    ZHANG X. A taxonomic study on the Genera Cephalosporium and broom[D]. Guiyang: Guizhou University, 2020. (in Chinese)
    [32] 赵玉鑫, 张铁, 赵玉晓, 等. 青霉菌对秸秆复合菌系好氧发酵的影响 [J]. 可再生能源, 2022, 40(3):285−291.

    ZHAO Y X, ZHANG T, ZHAO Y X, et al. Effect of Penicillium on the degradation of straw by compound bacterium agent [J]. Renewable Energy Resources, 2022, 40(3): 285−291.(in Chinese)
    [33] 谢安娜, 徐浩飞, 张志林, 等. 致病镰刀菌的研究进展 [J]. 湖北工程学院学报, 2020, 40(6):37−41. doi: 10.3969/j.issn.2095-4824.2020.06.009

    XIE A N, XU H F, ZHANG Z L, et al. Research development of Fusarium [J]. Journal of Hubei Engineering University, 2020, 40(6): 37−41.(in Chinese) doi: 10.3969/j.issn.2095-4824.2020.06.009
    [34] 公华锐, 李静, 马军花, 等. 秸秆还田配施有机无机肥料对冬小麦土壤水氮变化及其微生物群落和活性的影响 [J]. 生态学报, 2019, 39(6):2203−2214.

    GONG H R, LI J, MA J H, et al. Effects of straw incorporation combined with inorganic-organic fertilization on soil water and nitrogen changes and microbial community structure in winter wheat [J]. Acta Ecologica Sinica, 2019, 39(6): 2203−2214.(in Chinese)
    [35] 李红宇, 王志君, 范名宇, 等. 秸秆连续还田对苏打盐碱水稻土养分及真菌群落的影响 [J]. 干旱地区农业研究, 2021, 39(2):15−23.

    LI H Y, WANG Z J, FAN M Y, et al. Effects of continuous straw returning on nutrients of soda saline-alkaline paddy soil and fungal community [J]. Agricultural Research in the Arid Areas, 2021, 39(2): 15−23.(in Chinese)
    [36] 朱书红, 辉朝茂, 赵秀婷, 等. 甜龙竹不同种植年限对土壤真菌群落的影响 [J]. 环境科学, 2023, 44(6):3408−3417.

    ZHU S H, HUI C M, ZHAO X T, et al. Effects of different planting years of Dendrocalamus brandisii on soil fungal community [J]. Environmental Science, 2023, 44(6): 3408−3417.(in Chinese)
    [37] 郭璞, 邢鹏杰, 宋佳, 等. 蒙古栎根系与根区土壤真菌群落组成及与环境因子的关系 [J]. 菌物研究, 2022, 20(3):173−182. doi: 10.13341/j.jfr.2022.1489

    GUO P, XING P J, SONG J, et al. Fungal community in roots and the root zone of Quercus mongolica and the correlations with the environmental factors [J]. Journal of Fungal Research, 2022, 20(3): 173−182.(in Chinese) doi: 10.13341/j.jfr.2022.1489
    [38] 陈芬, 余高, 孙约兵, 等. 汞矿区周边农田土壤微生物群落结构特征及其环境驱动因子 [J]. 环境科学, 2022, 43(8):4342−4352. doi: 10.13227/j.hjkx.202111245

    CHEN F, YU G, SUN Y B, et al. Characteristics of microbial community structure in the surrounding farmlands of a mercury mining area and its environmental driving factors [J]. Environmental Science, 2022, 43(8): 4342−4352.(in Chinese) doi: 10.13227/j.hjkx.202111245
    [39] 刘会会, 喻庆国, 王行, 等. 碧塔海湿地不同水分梯度下土壤真菌群落结构及功能类群研究 [J]. 微生物学报, 2022, 62(8):3007−3023.

    LIU H H, YU Q G, WANG H, et al. Soil fungal community structure and functional groups under different moisture gradients in Bitahai Wetland, Southwest China [J]. Acta Microbiologica Sinica, 2022, 62(8): 3007−3023.(in Chinese)
    [40] 徐欣, 王笑影, 鲍雪莲, 等. 长期免耕不同秸秆覆盖量对玉米产量及其稳定性的影响 [J]. 应用生态学报, 2022, 33(3):671−676. doi: 10.13287/j.1001-9332.202203.015

    XU X, WANG X Y, BAO X L, et al. Effects of long-term no-tillage and stover mulching on maize yield and its stability [J]. Chinese Journal of Applied Ecology, 2022, 33(3): 671−676.(in Chinese) doi: 10.13287/j.1001-9332.202203.015
    [41] 周珂, 王晓军, 李华芝, 等. 秸秆深埋条件下不同施氮水平对玉米产量和氮吸收利用的影响 [J]. 中国农学通报, 2019, 35(33):6−11. doi: 10.11924/j.issn.1000-6850.casb20190500219

    ZHOU K, WANG X J, LI H Z, et al. The effects of different nitrogen application levels on maize yield and the absorption and utilization of nitrogen under straw deep burial [J]. Chinese Agricultural Science Bulletin, 2019, 35(33): 6−11.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb20190500219
    [42] 田文博. 不同秸秆还田方式对玉米生长发育及产量的影响[D]. 长春: 吉林农业大学, 2019.

    TIAN W B. Effects of different patterns of straw returning on growth and yield of maize[D]. Changchun: Jilin Agricultural University, 2019. (in Chinese)
    [43] 刘兴龙, 王克勤, 王晓曦, 等. 不同秸秆还田模式对亚洲玉米螟发生及玉米产量的影响 [J]. 黑龙江农业科学, 2023(4):31−35.

    LIU X L, WANG K Q, WANG X X, et al. Effects of different straw returning field modes on the occurrence of Ostrinia furnacalis and yield of maize [J]. Heilongjiang Agricultural Sciences, 2023(4): 31−35.(in Chinese)
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  96
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 修回日期:  2023-08-02
  • 网络出版日期:  2023-12-21
  • 刊出日期:  2023-12-28

目录

    /

    返回文章
    返回