• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 35 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
CHE S R, ZHANG J Y, LU W, et al. Profiling Differential Gene Expressions in Leaves and Roots of Sarcandra glabra Based on Transcriptome [J]. Fujian Journal of Agricultural Sciences,2020,35(6):598−610 doi: 10.19303/j.issn.1008-0384.2020.06.005
Citation: CHE S R, ZHANG J Y, LU W, et al. Profiling Differential Gene Expressions in Leaves and Roots of Sarcandra glabra Based on Transcriptome [J]. Fujian Journal of Agricultural Sciences,2020,35(6):598−610 doi: 10.19303/j.issn.1008-0384.2020.06.005

Profiling Differential Gene Expressions in Leaves and Roots of Sarcandra glabra Based on Transcriptome

doi: 10.19303/j.issn.1008-0384.2020.06.005
  • Received Date: 2019-11-09
  • Rev Recd Date: 2020-06-19
  • Publish Date: 2020-08-10
  •   Objective   Base on transcriptome sequencing, the molecular mechanisms that caused the secondary metabolic differences between the leaves and roots of Sarcandra glabra were studied for clinic applications of the two parts, as well as for determination of the effective components in the medicinal herb.   Method   Specimens of S. glabra were collected from Fuzhou, Fujian for a transcriptome analysis on the leaves and roots using the Illumina HiSeq platform. After filtration and the Trinity assembly, the unigenes were compared with Nr, Nt, Pfam, KOG, Swiss-Prot, KEGG, and GO by BLAST, and the differentially expressed genes analyzed. A special attention was paid on the differentially enriched genes in the KEGG metabolic pathway.   Result   More than 40 million clean reads were obtained from the sequencing. The Trinity assembly yielded 508 271 unigenes with an average length of 740 bp. Based on BLAST, 148 561 unigenes, accounting for 58.80% of the total, were successfully annotated using 7 functional annotation databases. There were 29 732 unigenes identified with differential gene expressions between the leaves and the roots. Of which, 12 511 were up-regulated and 17 221 down-regulated. Dozens of significantly different KEGG metabolic pathways were found that associated with functions such as starch/sucrose metabolism, phenylpropanoid biosynthesis, glyoxylate/dicarboxylate metabolism, carbon fixation in photosynthetic organisms, phagosome/glutathione metabolism, photosynthesis, alanine/aspartate/glutamate metabolism, sesquiterpenoid/triterpenoid biosynthesis, porphyrin/chlorophyll metabolism, nitrogen metabolism, circadian rhythm-plant/photosynthesis-antenna proteins, stilbenoid/diarylheptanoid/gingerol biosynthesis, unsaturated fatty acids biosynthesis, limonene/pinene degradation, carotenoid biosynthesis, diterpenoid biosynthesis, flavonoid biosynthesis, fatty acid elongation, etc. Insofar as pharmacodynamics is concerned, the secondary metabolic pathway of the phenylpropanoid biosynthesis had 193 differentially expressed genes between the leaves and the roots, that of the sesquiterpene/triterpene biosynthesis 82, that of the diterpene biosynthesis 40, and that of the flavonoid biosynthesis 35. In addition, the up-regulated genes of sesquiterpene synthase, ent-kaur-16-ene synthase, and flavonol synthase/flavanone 3-hydroxylase, as well as the down-regulated genes of 8-hydroxygeraniol dehydrogenase, vinornine synthase, and squalene synthase were found significantly different between the two parts.  Conclusion   The genes related to the secondary metabolic pathways of phenylalanine sesquiterpenoid and triterpenoid, diterpenes, and flavonoids most significantly differed in leaves and roots of S. glabra. The significantly differentiated genes associated with the key enzymes provided important information for analyzing the molecular mechanisms of the medicinal herb.
  • loading
  • [1]
    福建省科学技术委员会《福建植物志》编写组. 福建植物志: 第四卷 [M]. 福州: 福建科学技术出版社, 1990.
    [2]
    中国科学院《中国植物志》编辑委员会. 中国植物志 [M]. 北京: 科学出版社, 2005: 287 − 290.
    [3]
    国家药典委员会. 中华人民共和国药典: 2015年版 一部 [M]. 北京: 中国医药科技出版社, 2015: 234 − 235.
    [4]
    贾敏如, 李星炜. 中国民族药志要 [M]. 北京: 中国医药科技出版社, 2005: 365 − 366.
    [5]
    杨荣平, 王宾豪, 励娜, 等. GC-MS法分析肿节风叶中挥发油化学成分 [J]. 中成药, 2008, 30(11):1703−1704. doi: 10.3969/j.issn.1001-1528.2008.11.047

    YANG R P, WANG B H, LI N, et al. Analysis of chemical constituents of essential oil in leaves of Sarcandra glabra by GC-MS [J]. <italic>Chinese Traditional Patent Medicine</italic>, 2008, 30(11): 1703−1704.(in Chinese) doi: 10.3969/j.issn.1001-1528.2008.11.047
    [6]
    徐丽丽. 全缘金粟兰及草珊瑚的化学成分研究 [D]. 昆明: 云南中医学院, 2016.

    XU L L. Studies on the chemical constituents of Chloranthus versicolor and Sarcandra glabra [D]. Kunming: Yunnan University of Traditional Chinese Medicine, 2016.(in Chinese)
    [7]
    徐艳琴, 刘小丽, 黄小方, 等. 草珊瑚的研究现状与展望 [J]. 中草药, 2011, 42(12):2552−2559.

    XU Y Q, LIU X L, HUANG X F, et al. Status and prospect of studies on <italic>Sarcandra</italic> glaba [J]. <italic>Chinese Traditional and Herbal Drugs</italic>, 2011, 42(12): 2552−2559.(in Chinese)
    [8]
    周斌, 刘可越, 常军, 等. 中药肿节风的化学成分和药理作用研究进展 [J]. 中国现代应用药学, 2009, 26(12):982−986.

    ZHOU B, LIU K Y, CHANG J, et al. Advances on chemical constituents and pharmacological activities of <italic>Sarcandra</italic> <italic>glabra</italic> [J]. <italic>Chinese Journal of Modern Applied Pharmacy</italic>, 2009, 26(12): 982−986.(in Chinese)
    [9]
    姜伶, 李景辉. 中药肿节风的抗肿瘤作用研究进展 [J]. 中国执业药师, 2014, 11(04):29−31, 35.

    JIANG L, LI J H. Study Progress of Anticancer Effects of Sarcandrae Herba [J]. <italic>China Licensed Pharmacist</italic>, 2014, 11(04): 29−31, 35.(in Chinese)
    [10]
    梅全喜, 胡莹. 肿节风的药理作用及临床应用研究进展 [J]. 时珍国医国药, 2011, 22(1):230−232. doi: 10.3969/j.issn.1008-0805.2011.01.114

    MEI Q X, HU Y. Research progress in the pharmacological action and clinical application of <italic>Sarcandra glabra</italic> [J]. <italic>Lishizhen Medicine and Materia Medica Research</italic>, 2011, 22(1): 230−232.(in Chinese) doi: 10.3969/j.issn.1008-0805.2011.01.114
    [11]
    孙洪计, 魏慧君. RNA-Seq技术在转录组研究中的应用 [J]. 中外医学研究, 2018, 16(20):184−187.

    SUN H J, WEI H J. The application of RNA-seq technology in the study of the transcriptome [J]. <italic>Chinese and Foreign Medical Research</italic>, 2018, 16(20): 184−187.(in Chinese)
    [12]
    王媛媛, 杨美青. 药用植物转录组的研究进展 [J]. 安徽农学通报, 2019, 25(8):13−15, 52. doi: 10.3969/j.issn.1007-7731.2019.08.006

    WANG Y Y, YANG M Q. The advances in transcriptome of medicinal plants [J]. <italic>Anhui Agricultural Science Bulletin</italic>, 2019, 25(8): 13−15, 52.(in Chinese) doi: 10.3969/j.issn.1007-7731.2019.08.006
    [13]
    唐娟.三个茯苓品种的品质特性及转录组分析 [D].长沙: 湖南农业大学, 2016.

    TANG J. Analysis of characteristics of quality and the transcriptome of three tuckahoe varieties(Poria cocos)[D].Changsha: Hunan Agricultural University, 2016.
    [14]
    邓楠, 史胜青, 常二梅, 等. 膜果麻黄种子不同发育时期的转录组测序分析 [J]. 东北林业大学学报, 2015, 43(2):28−32. doi: 10.3969/j.issn.1000-5382.2015.02.007

    DENG N, SHI S Q, CHANG E M, et al. Transcriptomic analysis of germinated seeds of <italic>Ephedra</italic> <italic>przewalskii</italic> [J]. <italic>Journal of Northeast Forestry University</italic>, 2015, 43(2): 28−32.(in Chinese) doi: 10.3969/j.issn.1000-5382.2015.02.007
    [15]
    谢冬梅, 俞年军, 黄璐琦, 等. 基于高通量测序的药用植物“凤丹”根皮的转录组分析 [J]. 中国中药杂志, 2017, 42(15):2954−2961.

    XIE D M, YU N J, HUANG L Q, et al. Next generation sequencing and transcriptome analysis of root bark from <italic>Paeonia</italic> <italic>suffruticosa</italic> cv. Feng Dan [J]. <italic>China Journal of Chinese Materia Medica</italic>, 2017, 42(15): 2954−2961.(in Chinese)
    [16]
    陈延清, 胡志刚, 刘大会, 等. 药用植物冬凌草高通量转录组测序与分析 [J]. 中国现代中药, 2018, 20(12):1476−1482.

    CHEN Y Q, HU Z G, LIU D H, et al. High-throughput transcriptome sequencing and analysis of <italic>Isodon</italic> <italic>rubescens</italic> (hemsl.) H. <italic>Hara</italic> [J]. <italic>Modern Chinese Medicine</italic>, 2018, 20(12): 1476−1482.(in Chinese)
    [17]
    朱孝轩. 长春花转录组与萜类吲哚生物碱代谢途径研究 [D]. 北京: 北京协和医学院, 2015.

    ZHU X X. Research of transcriptome and biosynthetic pathway of TIAs in Catharanthus roseus [D]. Beijing: Peking Union Medical College, 2015.
    [18]
    GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. <italic>Nature Biotechnology</italic>, 2011, 29(7): 644−652. doi: 10.1038/nbt.1883
    [19]
    GOTZ S, GARCIA-GOMEZ J M, TEROL J, et al. High-throughput functional annotation and data mining with the Blast2GO suite [J]. <italic>Nucleic Acids Research</italic>, 2008, 36(10): 3420−3435. doi: 10.1093/nar/gkn176
    [20]
    LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. <italic>Genome Biology</italic>, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [21]
    YOUNG M D, WAKEFIELD M J, SMYTH G K, et al. Gene ontology analysis for RNA-seq: accounting for selection bias [J]. <italic>Genome Biology</italic>, 2010, 11(2): R14. doi: 10.1186/gb-2010-11-2-r14
    [22]
    MIZRACHI E, HEFER C A, RANIK M, et al. De novo assembled expressed gene catalog of a fast-growing <italic>Eucalyptus</italic> tree produced by Illumina mRNA-Seq [J]. <italic>BMC Genomics</italic>, 2010, 11(1): 681. doi: 10.1186/1471-2164-11-681
    [23]
    穆红梅, 杜秀菊, 张秀省, 等. 植物MYB转录因子调控苯丙烷类生物合成研究 [J]. 北方园艺, 2015(24):171−174.

    MU H M, DU X J, ZHANG X S, et al. Study on plants MYB Transcription factors regulate biological synthesis of phenylpropanoid metabolism [J]. <italic>Northern Horticulture</italic>, 2015(24): 171−174.(in Chinese)
    [24]
    邵佳. 草珊瑚总黄酮提取纯化及药理作用研究 [D]. 贵阳: 贵州大学, 2008.

    SHAO J. Study on the extraction, purification and pharmacological action of total flavonoids in Sarcandra glabra [D]. Guiyang: Guizhou University, 2008.(in Chinese)
    [25]
    郑永标, 许小萍, 邹先文, 等. 草珊瑚药材抗氧化活性化学成分研究 [J]. 福建师范大学学报(自然科学版), 2016, 32(3):98−102.

    ZHENG Y B, XU X P, ZOU X W, et al. Chemical constituents with the antioxidant activity in <italic>Sarcandra</italic> <italic>glabra</italic> [J]. <italic>Journal of Fujian Normal University(Natural Science Edition)</italic>, 2016, 32(3): 98−102.(in Chinese)
    [26]
    王敦清, 李先春. 草珊瑚根茎叶中总黄酮成分的研究 [J]. 中草药, 1996, 27(6):337−338.

    WANG D Q, LI X C. Studies on total flavonoids from root, stem and leaf of glabrous <italic>Sarcandra</italic> (<italic>Sarcandra</italic> <italic>glabra</italic>) [J]. <italic>Chinese Traditional and Herbal Drugs</italic>, 1996, 27(6): 337−338.(in Chinese)
    [27]
    陈郑, 哈文波. 高良姜素抗肿瘤作用机制的研究进展 [J]. 医学综述, 2017, 23(9):1752− 1756. doi: 10.3969/j.issn.1006-2084.2017.09.018

    CHEN Z, HA W B. Research progress of antineoplastic mechanism for galangin [J]. <italic>Medical Recapitulate</italic>, 2017, 23(9): 1752− 1756.(in Chinese) doi: 10.3969/j.issn.1006-2084.2017.09.018
    [28]
    张旭光, 尹航, 陈峰, 等. 高良姜素药理活性的研究进展 [J]. 中国现代中药, 2016, 18(11):1532−1536.

    ZHANG X G, YIN H, CHEN F, et al. Advances in study of pharmacological activities of galangin [J]. <italic>Modern Chinese Medicine</italic>, 2016, 18(11): 1532−1536.(in Chinese)
    [29]
    吴少花, 陈君, 刘亚萌, 等. 杨梅素抗肿瘤活性研究进展 [J]. 吉林医药学院学报, 2015, 36(5):381−383.

    WU S H, CHEN J, LIU Y M, et al. Progress in myricetin antitumor activity [J]. <italic>Journal of Jilin Medical College</italic>, 2015, 36(5): 381−383.(in Chinese)
    [30]
    王潞, 周云英. 杨梅素抗感染、抗炎及抗氧化活性研究进展 [J]. 中草药, 2019, 50(3):778−784. doi: 10.7501/j.issn.0253-2670.2019.03.035

    WANG L, ZHOU Y Y. Research progress on anti-infective, anti-inflammatory, and anti-oxidant activities of myricetin [J]. <italic>Chinese Traditional and Herbal Drugs</italic>, 2019, 50(3): 778−784.(in Chinese) doi: 10.7501/j.issn.0253-2670.2019.03.035
    [31]
    林国钡, 谢燕, 李国文. 杨梅素的研究进展 [J]. 国际药学研究杂志, 2012, 39(6):483−487.

    LIN G B, XIE Y, LI G W. Research advances of myricetin [J]. <italic>Journal of International Pharmaceutical Research</italic>, 2012, 39(6): 483−487.(in Chinese)
    [32]
    翟广玉, 马海英, 郜蕾. 槲皮素及其衍生物的抗肿瘤活性研究进展 [J]. 化学试剂, 2015, 37(2):97−103.

    ZHAI G Y, MA H Y, GAO L. Progress of antitumor activity of quercetin and derivatives [J]. <italic>Chemical Reagents</italic>, 2015, 37(2): 97−103.(in Chinese)
    [33]
    陈振华, 胡晓艳, 赵滕, 等. 槲皮素对心血管系统疾病的影响及其新剂型研究进展 [J]. 时珍国医国药, 2019, 30(2):440−443.

    CHEN Z H, HU X Y, ZHAO T, et al. The research progress of the effect of quercetin on cardiovascular diseases and its new formulations [J]. <italic>Lishizhen Medicine and Materia Medica Research</italic>, 2019, 30(2): 440−443.(in Chinese)
    [34]
    张超, 李昌平. 槲皮素治疗非酒精性脂肪性肝病的作用机制研究进展 [J]. 中药新药与临床药理, 2015, 26(5):718−721.

    ZHANG C, LI C P. Current progress in mechanism of quercetin for treatment of non-alcoholic fatty liver disease [J]. <italic>Traditional Chinese Drug Research and Clinical Pharmacology</italic>, 2015, 26(5): 718−721.(in Chinese)
    [35]
    石玥, 梁晓春. 槲皮素防治神经退行性疾病的机制研究进展 [J]. 中国中西医结合杂志, 2012, 32(10):1432−1435.

    SHI Y, LIANG X C. The mechanism of quercetin in the prevention and treatment of neurodegenerative diseases [J]. <italic>Chinese Journal of Integrated Traditional and Western Medicine</italic>, 2012, 32(10): 1432−1435.(in Chinese)
    [36]
    包侠萍. 草珊瑚不同部位及不同采收期有效成分含量的考察 [J]. 海峡药学, 2014, 26(12):42−44. doi: 10.3969/j.issn.1006-3765.2014.12.017

    BAO X P. Study on the content of active components in different parts and harvest time of Caoshanhu [J]. <italic>Strait Pharmaceutical Journal</italic>, 2014, 26(12): 42−44.(in Chinese) doi: 10.3969/j.issn.1006-3765.2014.12.017
    [37]
    冯鹤翔, 涂轶. 木质素生物合成的研究 [J]. 青岛大学学报(自然科学版), 2018, 31(1):46−54.

    FENG H X, TU Y. Research on lignin biosynthesis [J]. <italic>Journal of Qingdao University(Natural Science Edition)</italic>, 2018, 31(1): 46−54.(in Chinese)
    [38]
    时敏, 王瑶, 周伟, 等. 药用植物萜类化合物的生物合成与代谢调控研究进展 [J]. 中国科学:生命科学, 2018, 48(4):352−364.

    SHI M, WANG Y, ZHOU W, et al. Research progress in terms of the biosynthesis and regulation of terpenoids from medicinal plants [J]. <italic>Scientia Sinica(Vitae)</italic>, 2018, 48(4): 352−364.(in Chinese)
    [39]
    苏文炳, 蒋园园, 白昀鹭, 等. 转录因子调控植物萜类化合物生物合成研究进展 [J]. 农业生物技术学报, 2019, 27(5):919−926.

    SU W B, JIANG Y Y, BAI Y L, et al. Advances in transcription factors regulation on plant terpene biosynthesis [J]. <italic>Journal of Agricultural Biotechnology</italic>, 2019, 27(5): 919−926.(in Chinese)
    [40]
    金祖汉, 金捷, 毛培江, 等. 角鲨烯对四氯化碳急性肝损伤模型小鼠的抗氧化和护肝作用研究 [J]. 浙江中医药大学学报, 2015, 39(9):666−670.

    JIN Z H, JIN J, MAO P J, et al. Study of the antioxidative and hepatoprotective effects of squalene on acute liver injury mice induced by CCl<sub>4</sub> [J]. <italic>Journal of Zhejiang Chinese Medical University</italic>, 2015, 39(9): 666−670.(in Chinese)
    [41]
    缪云萍, 陈爱瑛, 夏志国, 等. 角鲨烯对小鼠急性酒精性肝损伤的保护作用 [J]. 食品工业科技, 2015, 36(16):364−365, 377.

    MIAO Y P, CHEN A Y, XIA Z G, et al. Protective effects of squalene on acute alcohol-induced liver injury in mice [J]. <italic>Science and Technology of Food Industry</italic>, 2015, 36(16): 364−365, 377.(in Chinese)
    [42]
    KATSELOU M G, MATRALIS A N, KOUROUNAKIS A P. Developing potential agents against atherosclerosis: Design, synthesis and pharmacological evaluation of novel dual inhibitors of oxidative stress and Squalene Synthase activity [J]. <italic>European Journal of Medicinal Chemistry</italic>, 2017, 138: 748−760. doi: 10.1016/j.ejmech.2017.06.042
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(9)

    Article Metrics

    Article views (1294) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return