• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 36 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
SU Y F, DING Y H, HAO C Y, et al. Whole-genome Identification and Bioinformatics of PnPAL Family in Black Peppers [J]. Fujian Journal of Agricultural Sciences,2021,36(6):619−628 doi: 10.19303/j.issn.1008-0384.2021.06.001
Citation: SU Y F, DING Y H, HAO C Y, et al. Whole-genome Identification and Bioinformatics of PnPAL Family in Black Peppers [J]. Fujian Journal of Agricultural Sciences,2021,36(6):619−628 doi: 10.19303/j.issn.1008-0384.2021.06.001

Whole-genome Identification and Bioinformatics of PnPAL Family in Black Peppers

doi: 10.19303/j.issn.1008-0384.2021.06.001
  • Received Date: 2020-04-17
  • Rev Recd Date: 2020-08-03
  • Available Online: 2021-07-13
  • Publish Date: 2021-06-28
  •   Objective  Basic characteristics and evolutional relationship on the phenylpropane metabolic pathway associated with the pepper blast disease that ill-affects the cultivation and production of the globally important spice, black peppers, were studied.   Method  The phenylpropane metabolic pathway was believed to be key to the blast resistance of black peppers, and phenylalanine ammonialyase (PAL) to be the crucial, rate-limiting enzyme in the pathway. Hence, based on the transcriptomics of a resistant black pepper germplasm the sequences of 14 PALs were identified and named PnPAL1-PnPAL14. Their bioinformatics and expression patterns were analyzed.   Result  The gene family had a theoretical isoelectric point between pH 5.76 and 9.77 with a molecular weight between 7.37441 kDa and 83.43107 kDa. Seven of the identified PnPALs contained 8 motifs and PLN02457 conserved domains. They belonged to the PnPAL family that consisted of many stress response elements, especially salicylic acid, methyl jasmonate, and other cis-acting elements, which are known to resist the pathogenic invasion. The PnPALs were located at the base of the phylogenetic tree, being relatively old and holding a status like black peppers. PnPAL10 expressed in an up-regulation trend after a pathogenic induction suggesting a close relation of the gene to the blast resistance of the plant.   Conclusion  A critical role the PnPAL family played in the blast resistance of black peppers was positively identified.
  • loading
  • [1]
    刘进平, 郑成木, 郑服丛. 胡椒瘟病与辣椒疫霉 [J]. 热带农业科学, 2001, 21(5):57−61. doi: 10.3969/j.issn.1009-2196.2001.05.014

    LIU J P, ZHENG C M, ZHENG F C. Black pepper foot rot and Phytophthora capsica [J]. Chinese Journal of Tropical Agriculture, 2001, 21(5): 57−61.(in Chinese) doi: 10.3969/j.issn.1009-2196.2001.05.014
    [2]
    桑利伟, 刘爱勤, 谭乐和, 等. 海南省胡椒瘟病病原鉴定及发生规律 [J]. 植物保护, 2011, 37(6):168−171. doi: 10.3969/j.issn.0529-1542.2011.06.034

    SANG L W, LIU A Q, TAN L H, et al. Pathogen identification and occurrence of the pepper Phytophthora foot rot in Hainan Province [J]. Plant Protection, 2011, 37(6): 168−171.(in Chinese) doi: 10.3969/j.issn.0529-1542.2011.06.034
    [3]
    YUAN W, JIANG T, DU K T, et al. Maize phenylalanine ammonia-lyases contribute to resistance to sugarcane mosaic virus infection, most likely through positive regulation of salicylic acid accumulation [J]. Molecular Plant Pathology, 2019, 20(10): 1365−1378. doi: 10.1111/mpp.12817
    [4]
    王敬文, 薛应龙. 植物苯丙氨酸解氨酶的研究——Ⅱ 苯丙氨酸解氨酶在抗马铃薯晚疫病中的作用 [J]. 植物生理学报, 1982(1):35−43.

    WANG J W, XUE Y L. Study on plant phenylalanine ammonia lyase—Ⅱ the role of phenylalanine ammonia lyase in resistance to potato late blight [J]. Plant Physiology Communications, 1982(1): 35−43.(in Chinese)
    [5]
    DIXON R. A Stress-induced phenylpropanoid metabolism [J]. Plant Cell, 1995, 7(7): 1085. doi: 10.2307/3870059
    [6]
    康晓慧, 雷桅, 张梅. 水稻苯丙氨酸解氨酶的生物信息学分析 [J]. 湖南师范大学自然科学学报, 2010, 33(4):89−94. doi: 10.3969/j.issn.1000-2537.2010.04.018

    KANG X H, LEI W, ZHANG M. Bioinformatic analysis of phenylalanine ammonia-lyase gene in Oryza sativa [J]. Journal of Natural Science of Hunan Normal University, 2010, 33(4): 89−94.(in Chinese) doi: 10.3969/j.issn.1000-2537.2010.04.018
    [7]
    杨郁文, 李双, 黄俊宇, 等. 陆地棉苯丙氨酸解氨酶家族基因的鉴定及分析 [J]. 分子植物育种, 2017, 15(4):1184−1191.

    YANG Y W, LI S, HUANG J Y, et al. Identification and analysis of the gene family of phenylalanine ammonia-lyase in upland cotton [J]. Molecular Plant Breeding, 2017, 15(4): 1184−1191.(in Chinese)
    [8]
    范丽. 桑树木质素合成基因的生物信息和功能分析[D].重庆: 西南大学, 2013.

    FAN L. Biological information and function analysis of mulberry lignin synthesis gene[D]. Chongqing: Southwest University, 2013.
    [9]
    宋婕. 丹参苯丙氨酸解氨酶基因(SmPAL1)的克隆及其功能初探[D]. 西安: 陕西师范大学, 2007.

    SONG J. Molecular cloning of a phenylalanine ammonia—lyase gene(SmPALl) from Salvia miltiorrhiza and the primary study on its function[D]. Xi'an: Shaanxi Normal University, 2007.(in chinese)
    [10]
    冯立娟, 尹燕雷, 焦其庆, 等. 石榴PAL基因的克隆与表达分析 [J]. 核农学报, 2018, 32(7):1320−1329. doi: 10.11869/j.issn.100-8551.2018.07.1320

    FENG L J, YIN Y L, JIAO Q Q, et al. Cloning and expression analysis of PAL gene in pomegranate (Punica granatum L.) [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1320−1329.(in Chinese) doi: 10.11869/j.issn.100-8551.2018.07.1320
    [11]
    郭鹏飞, 雷健, 罗佳佳, 等. 柱花草苯丙氨酸解氨酶(SgPALs)对生物胁迫与非生物胁迫的响应 [J]. 热带作物学报, 2019, 40(9):1742−1751. doi: 10.3969/j.issn.1000-2561.2019.09.011

    GUO P F, LEI J, LUO J J, et al. Response of phenylpropane ammonia-lyase on biotic and abiotic stress in Stylosanthes [J]. Chinese Journal of Tropical Crops, 2019, 40(9): 1742−1751.(in Chinese) doi: 10.3969/j.issn.1000-2561.2019.09.011
    [12]
    雒军, 王引权, 温随超, 等. 当归苯丙氨酸解氨酶基因片段克隆和组织特异性表达分析 [J]. 草业学报, 2014, 23(4):130−137. doi: 10.11686/cyxb20140416

    LUO J, WANG Y Q, WEN S C, et al. Cloning and tissue-specific expression analysis of phenylalanine ammonia-lyase gene fragment in Angelica sinensis [J]. Acta Prataculturae Sinica, 2014, 23(4): 130−137.(in Chinese) doi: 10.11686/cyxb20140416
    [13]
    HAO C, XIA Z, FAN R, et al. De novo transcriptome sequencing of black pepper (Piper nigrum L.) and an analysis of genes involved in phenylpropanoid metabolism in response to Phytophthora capsici [J]. BMC Genomics, 2016, 17(1): 822. doi: 10.1186/s12864-016-3155-7
    [14]
    文印. 基部被子植物水力结构进化及其与光合的关联[D].南宁: 广西大学, 2019.

    WEN Y. Evolution of hydraulic structure in basal angiosperms and its relation to photosynthesis - case studies[D]. Nanning: Guangxi University, 2019.
    [15]
    杨永, 傅德志, 王祺. 被子植物花的起源:假说和证据 [J]. 西北植物学报, 2004(12):2366−2380. doi: 10.3321/j.issn:1000-4025.2004.12.032

    YANG Y, FU D Z, WANG Q. Origin of flowers:hypotheses and evidence [J]. Acta Botanica Boreali-occidentalia Sinica, 2004(12): 2366−2380.(in Chinese) doi: 10.3321/j.issn:1000-4025.2004.12.032
    [16]
    叶小真, 杨婕, 冯丽贞, 等. 桉树PAL基因克隆及焦枯病菌诱导下的表达分析 [J]. 林业科学研究, 2019, 32(6):99−105.

    YE X Z, YANG J, FENG L, et al. Cloning of PAL Gene from Eucalyptus and Its Expression underCalonectria pseudoreteaudii Stress [J]. Forest Research, 2019, 32(6): 99−105.(in Chinese)
    [17]
    吴远航, 刘秦, 刘攀道, 等. 木薯苯丙氨酸解氨酶基因的克隆及其对低温胁迫的响应 [J]. 热带作物学报, 2019, 40(3):483−489. doi: 10.3969/j.issn.1000-2561.2019.03.010

    WU Y H, LIU Q, LIU P D, et al. Cloning of Cassava Phenylalanine Ammonia Lyase Genes and Their Responses to Low Temperature Stress [J]. Chinese Journal of Tropical Crops, 2019, 40(3): 483−489.(in Chinese) doi: 10.3969/j.issn.1000-2561.2019.03.010
    [18]
    高红胜, 张仁英, 许学文, 等. 黄瓜苯丙氨酸解氨酶基因CsPAL的克隆及响应白粉菌侵染的表达分析 [J]. 分子植物育种, 2019, 17(6):1757−1762. doi: 10.13271/j.mpb.017.001757

    GAO H S, ZHANG R Y, XU X W, et al. Cloning of CsPAL Gene and Its Expression Analysis in response to Powdery Mildew Infection [J]. Molecular Plant Breeding, 2019, 17(6): 1757−1762.(in Chinese) doi: 10.13271/j.mpb.017.001757
    [19]
    孙海燕, 全雪丽, 付爽, 等. 拟南芥苯丙氨酸解氨酶(PAL)基因的研究进展 [J]. 延边大学农学学报, 2016, 38(1):88−92.

    SUN H Y, QUAN X L, FU S, et al. Research progress of Phenylalanine ammonia-lyase (PAL) gene in Arabidopsis thaliana [J]. Journal of Agricultural Science Yanbian University, 2016, 38(1): 88−92.(in Chinese)
    [20]
    方长旬, 王清水, 余彦, 等. 不同胁迫条件下化感与非化感水稻PAL多基因家族的差异表达 [J]. 生态学报, 2011, 31(16):4760−4767.

    FANG C X, WANG Q S, YU Y, et al. Differential expression of PAL multigene family in allelopathic rice and its counterpart exposed to stressful conditions [J]. Acta Ecologica Sinica, 2011, 31(16): 4760−4767.(in Chinese)
    [21]
    王燕, 石强, 薛志东. 蛋白质结构域划分方法及在线服务综述 [J]. 广州大学学报(自然科学版), 2019, 18(1):20−29.

    WANG Y, SHI Q, XUE Z D. a review of protein domain partitioning methods and online services [J]. Journal of Guangzhou University (Natural Science Edition), 2019, 18(1): 20−29.(in Chinese)
    [22]
    DE GRASSI A, LANAVE C, SACCONE C. Genome duplication and gene-family evolution: The case of three OXPHOS gene families [J]. Gene, 2008, 421(1/2): 1−6.
    [23]
    WHETTEN R W, SEDEROFF R R. Phenylalanine ammonia-lyase from loblolly pine: Purification of the enzyme and isolation of complementary DNA clones [J]. Plant Physiology, 1992, 98(1): 380−386. doi: 10.1104/pp.98.1.380
    [24]
    YONA A H, MANOR Y S, HERBST R H, et al. Chromosomal duplication is a transient evolutionary solution to stress [J]. PNAS, 2012, 109(51): 21010−21015. doi: 10.1073/pnas.1211150109
    [25]
    张古文, 刘莉莉, 王显瑞, 等. 谷子HSP70基因家族的全基因组鉴定及生物信息学分析 [J]. 浙江农业学报, 2015, 27(7):1127−1133. doi: 10.3969/j.issn.1004-1524.2015.07.03

    ZHANG G W, LIU L L, WANG X R, et al. Genome-wide identification and bioinformatics analysis of HSP70 genes in foxtail millet [J]. Acta Agriculturae Zhejiangensis, 2015, 27(7): 1127−1133.(in Chinese) doi: 10.3969/j.issn.1004-1524.2015.07.03
    [26]
    李文燕. 植物OPR基因家族系统发育分析及水稻OPR家族基因分子生物学功能研究[D]. 广州: 中山大学, 2010.

    LI W Y. Phylogenetic analysis of OPR gene fam ily in plants and study of molecular biological functions of OPR family genes in rice[J]. Guangzhou: Sun Yat-sen University, 2010.
    [27]
    OHTA T. Evolution and Variation of Multigene Families[M]//Evolution and variation of multigene families/. Springer-Verlag, 1980.
    [28]
    BAJIC V B, BRENT M R, BROWN R H, et al. Performance assessment of promoter predictions on ENCODE regions in the EGASP experiment [J]. Genome Biology, 2006, 7(S1): S3.1−S313.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (802) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return