• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 36 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
YAN M H, ZHENG Y C, HOU B H, et al. Identification and Expression Analysis of ETR Gene Family in Camellia sinensis [J]. Fujian Journal of Agricultural Sciences,2021,36(10):1160−1168 doi: 10.19303/j.issn.1008-0384.2021.10.007
Citation: YAN M H, ZHENG Y C, HOU B H, et al. Identification and Expression Analysis of ETR Gene Family in Camellia sinensis [J]. Fujian Journal of Agricultural Sciences,2021,36(10):1160−1168 doi: 10.19303/j.issn.1008-0384.2021.10.007

Identification and Expression Analysis of ETR Gene Family in Camellia sinensis

doi: 10.19303/j.issn.1008-0384.2021.10.007
  • Received Date: 2021-05-26
  • Rev Recd Date: 2021-08-30
  • Available Online: 2021-10-23
  • Publish Date: 2021-10-28
  •   Objective  CsETRs were identified and analyzed to predict the potential molecular functions involving the mechanism of ethylene receptor in response to stress in tea plants.   Method  Bioinformatics was used to identify members in the ETR family and predict their potential molecular functions. Real-time fluorescence quantitative analysis was employed for the expressions of the genes under stresses.  Result  Six ETRs were identified from the genome of tea plants. They all consisted of N-terminal transmembrane region, GAF region, and histidine (His) kinase domain. Phylogenetic tree analysis divided them into two groups. Each member of the ETR family contained 1-12 exons. Significantly differentiated in tissues, the expressions of ETRs were high in the fruits and stems. The fluorescence quantitative expressions of the 6 genes, especially ERS1-1, were upregulated to varying degrees when exposed to low temperature. Under the stress of plant growth regulators ABA, JA, or GA, most of the genes were upregulated, especially ERS1-3, but ETR2-2 downregulated slowly when treated by ABA.   Conclusion  On tea plants, 6 CsETRs in the family were identified with their potential molecular functions predicted and analyzed in this study. CsETRs were highly expressed in the fruits and stems that could be induced by low-temperature stress. Whereas ABA, MeJA, or GA could significantly upregulate the expression of ERS1-3.
  • loading
  • [1]
    HAZRA A, DASGUPTA N, SENGUPTA C, et al. Next generation crop improvement program: Progress and prospect in tea (Camellia sinensis (L.) O. Kuntze) [J]. Annals of Agrarian Science, 2018, 16(2): 128−135.
    [2]
    HUA J, MEYEROWITZ E M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana [J]. Cell, 1998, 94(2): 261−271. doi: 10.1016/S0092-8674(00)81425-7
    [3]
    WEN X, ZHANG C L, JI Y S, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl Terminus [J]. Cell Research, 2012, 22(11): 1613−1616. doi: 10.1038/cr.2012.145
    [4]
    HUA J, SAKAI H, NOURIZADEH S, et al. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis [J]. The Plant Cell, 1998, 10(8): 1321−1332. doi: 10.1105/tpc.10.8.1321
    [5]
    冯斗, 张春发, 张颖. 香蕉乙烯受体基因cDNA的克隆及其表达分析 [J]. 热带作物学报, 2004, 25(1):6−10. doi: 10.3969/j.issn.1000-2561.2004.01.002

    FENG D, ZHANG C F, ZHANG Y. Ublished by Evert (2001). Slot Northern hybridization with the labeled probe of PGCHI indicated [J]. Chinese Journal of Tropical Crops, 2004, 25(1): 6−10.(in Chinese) doi: 10.3969/j.issn.1000-2561.2004.01.002
    [6]
    李丽, 孙健, 易萍, 等. 芒果乙烯受体ETR1和ERS1基因的克隆及序列分析 [J]. 南方农业学报, 2018, 49(6):1053−1060. doi: 10.3969/j.issn.2095-1191.2018.06.02

    LI L, SUN J, YI P, et al. Cloning and sequence analysis of ethylene receptor ETR1 and ERS1 genes from Mango [J]. Journal of Southern Agriculture, 2018, 49(6): 1053−1060.(in Chinese) doi: 10.3969/j.issn.2095-1191.2018.06.02
    [7]
    陈志晟, 颜彦, 赵思涵, 等. 木薯ETR1基因克隆及表达分析 [J]. 南方农业学报, 2020, 51(1):19−26. doi: 10.3969/j.issn.2095-1191.2020.01.003

    CHEN Z S, YAN Y, ZHAO S H, et al. Cloning and expression analysis of MeETR1 gene in cassava [J]. Journal of Southern Agriculture, 2020, 51(1): 19−26.(in Chinese) doi: 10.3969/j.issn.2095-1191.2020.01.003
    [8]
    王睿, 吴佳文, 毛仁俊, 陈国梁, 白朕卿. 丹参乙烯受体SmETR1基因的克隆及序列分析[J/OL]. 基因组学与应用生物学: 1−9[2021-05-06]. http://kns.cnki.net/kcms/detail/45.1369.Q.20210317.1532.002.html.

    WANG R, WU J W, ZHAO S H, et al. Cloning and sequence analysis of ethylene receptor SmETR1 gene from Salvia miltiorrhiza[J/OL]. Genomics and Applied Biology, 1-9[2021-05-06]. http://kns.cnki.net/kcms/detail/45.1369.Q.20210317.1532.002.html.
    [9]
    XIA E H, ZHANG H B, SHENG J, et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis [J]. Molecular Plant, 2017, 10(6): 866−877. doi: 10.1016/j.molp.2017.04.002
    [10]
    WEI C L, YANG H, WANG S B, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. PNAS, 2018, 115(18): E4151−E4158. doi: 10.1073/pnas.1719622115
    [11]
    WANG X C, FENG H, CHANG Y X, et al. Population sequencing enhances understanding of tea plant evolution [J]. Nature Communications, 2020, 11: 4447. doi: 10.1038/s41467-020-18228-8
    [12]
    CHEN J D, ZHENG C, MA J Q, et al. The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant [J]. Horticulture Research, 2020, 7: 63. doi: 10.1038/s41438-020-0288-2
    [13]
    ZHANG Q J, LI W, LI K, et al. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution [J]. Molecular Plant, 2020, 13(7): 935−938. doi: 10.1016/j.molp.2020.04.009
    [14]
    陈丹, 俞滢, 岳川, 等. 茶树△12-脂肪酸去饱和酶基因FAD2和FAD6的克隆与表达分析 [J]. 茶叶科学, 2017, 37(6):541−550. doi: 10.3969/j.issn.1000-369X.2017.06.001

    CHEN D, YU Y, YUE C, et al. Cloning and expression analysis of △12-fatty acid desaturase in tea plants [J]. Journal of Tea Science, 2017, 37(6): 541−550.(in Chinese) doi: 10.3969/j.issn.1000-369X.2017.06.001
    [15]
    王鹏杰, 郑玉成, 林浥, 等. 茶树GRF基因家族的全基因组鉴定及表达分析 [J]. 西北植物学报, 2019, 39(3):413−421.

    WANG P J, ZHENG Y C, LIN Y, et al. Genome-wide identification and expression analysis of GRF gene family in Camellia sinensis [J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(3): 413−421.(in Chinese)
    [16]
    XIA E H, LI F D, TONG W, et al. Tea Plant Information Archive: A comprehensive genomics and bioinformatics platform for tea plant [J]. Plant Biotechnology Journal, 2019, 17(10): 1938−1953. doi: 10.1111/pbi.13111
    [17]
    SCHULTZ J, MILPETZ F, BORK P, et al. SMART, a simple modular architecture research tool: Identification of signaling domains [J]. PNAS, 1998, 95(11): 5857−5864. doi: 10.1073/pnas.95.11.5857
    [18]
    MARCHLER-BAUER A, DERBYSHIRE M K, GONZALES N R, et al. CDD: NCBI's conserved domain database [J]. Nucleic Acids Research, 2015, 43(Database issue): D222−D226.
    [19]
    DUVAUD S, GABELLA C, LISACEK F, et al. Expasy, the Swiss bioinformatics resource portal, as designed by its users [J]. Nucleic Acids Research, 2021, 49(W1): W216−W227. doi: 10.1093/nar/gkab225
    [20]
    HORTON P, PARK K J, OBAYASHI T, et al. WoLF PSORT: Protein localization predictor [J]. Nucleic Acids Research, 2007, 35(Web Server issue): W585−W587.
    [21]
    NEWMAN L, DUFFUS A L J, LEE C. Using the free program MEGA to build phylogenetic trees from molecular data [J]. The American Biology Teacher, 2016, 78(7): 608−612. doi: 10.1525/abt.2016.78.7.608
    [22]
    HU B, JIN J P, GUO A Y, et al. GSDS 2.0: An upgraded gene feature visualization server [J]. Bioinformatics, 2015, 31(8): 1296−1297. doi: 10.1093/bioinformatics/btu817
    [23]
    BAILEY T L, BODEN M, BUSKE F A, et al. MEME Suite: Tools for motif discovery and searching [J]. Nucleic Acids Research, 2009, 37(Suppl_2): W202−W208.
    [24]
    陈雪津, 王鹏杰, 郑玉成, 等. 茶树BES1转录因子全基因组鉴定与分析 [J]. 西北植物学报, 2019, 39(5):876−885.

    CHEN X J, WANG P J, ZHENG Y C, et al. Genome-wide identification and analysis of BES1 transcription factor family in Camellia sinensis [J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(5): 876−885.(in Chinese)
    [25]
    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [26]
    TIEMAN D M, KLEE H J. Differential expression of two novel members of the tomato ethylene-receptor family [J]. Plant Physiology, 1999, 120(1): 165−172. doi: 10.1104/pp.120.1.165
    [27]
    郭呈宇, 柳俊, 李园磊, 等. 甜瓜果实成熟相关基因家族的全基因组鉴定及分析 [J]. 华北农学报, 2019, 34(2):35−43. doi: 10.7668/hbnxb.201750903

    GUO C Y, LIU J, LI Y L, et al. Genome-wide identification and analysis of gene families related to fruit ripening of melon [J]. Acta Agriculturae Boreali-Sinica, 2019, 34(2): 35−43.(in Chinese) doi: 10.7668/hbnxb.201750903
    [28]
    WATANABE H, SAIGUSA M, SHU H S, et al. Cloning of a cDNA encoding an ETR2-like protein (Os-ERL1) from deep water rice (Oryza sativa L.) and increase in its mRNA level by submergence, ethylene, and gibberellin treatments [J]. Journal of Experimental Botany, 2004, 55(399): 1145−1148. doi: 10.1093/jxb/erh110
    [29]
    XIE C, ZHANG Z G, ZHANG J S, et al. Spatial expression and characterization of a putative ethylene receptor protein NTHK1 in tobacco [J]. Plant and Cell Physiology, 2002, 43(7): 810−815. doi: 10.1093/pcp/pcf095
    [30]
    GALLIE D R. Ethylene receptors in plants-why so much complexity? [J]. F1000Prime Reports, 2015, 7: 39.
    [31]
    ZHOU D B, KALAITZIS P, MATTOO A K, et al. The mRNA for an ETR1 homologue in tomato is constitutively expressed in vegetative and reproductive tissues [J]. Plant Molecular Biology, 1996, 30(6): 1331−1338. doi: 10.1007/BF00019564
    [32]
    WURIYANGHAN H, ZHANG B, CAO W H, et al. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice [J]. The Plant Cell, 2009, 21(5): 1473−1494. doi: 10.1105/tpc.108.065391
    [33]
    苏丽艳. 番茄SlETR6基因的克隆及非生物胁迫下的表达分析 [J]. 华北农学报, 2019, 34(1):19−25. doi: 10.7668/hbnxb.201751117

    SU L Y. Cloning and expression analysis of ethylene receptor gene SlETR6 in Solanum lycopersicum under abiotic stress [J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 19−25.(in Chinese) doi: 10.7668/hbnxb.201751117
    [34]
    黄静丽. 甘蔗乙烯受体基因SoERS1表达、转化及启动子序列的研究[D]. 南宁: 广西大学, 2013.

    HUANG J L. Study on sugarcane ethylene receptor gene SoERS1Expression, genetic transformation and promoter sequences[D]. Nanning: Guangxi University, 2013. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (629) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return