• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 36 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
YOU C H, LIN L L, CHEN S, et al. Effects of Magnesium on Chlorophyll Fluorescence and Metabolism of Citrullus lanatus [J]. Fujian Journal of Agricultural Sciences,2021,36(11):1302−1314 doi: 10.19303/j.issn.1008-0384.2021.11.007
Citation: YOU C H, LIN L L, CHEN S, et al. Effects of Magnesium on Chlorophyll Fluorescence and Metabolism of Citrullus lanatus [J]. Fujian Journal of Agricultural Sciences,2021,36(11):1302−1314 doi: 10.19303/j.issn.1008-0384.2021.11.007

Effects of Magnesium on Chlorophyll Fluorescence and Metabolism of Citrullus lanatus

doi: 10.19303/j.issn.1008-0384.2021.11.007
  • Received Date: 2021-07-19
  • Rev Recd Date: 2021-08-12
  • Available Online: 2021-12-30
  • Publish Date: 2021-11-28
  •   Objective   Effects of magnesium on the growth, development, and metabolism of Citrullus lanatus were studied to determine the appropriate nutrient supply for the melon cultivation.  Method   At the concentrations of 0, 24, 48, 96, and 192 mg·L−1 on magnesium in sand culture, the growth characteristics (i.e., leaf and root morphology, chlorophyll fluorescence, and biomass accumulation), fruit quality (i.e., vitamin C, soluble solids, soluble protein, and soluble sugar), and physiological responses (i.e., osmoregulation, membrane damage, and antioxidases) of various C. lanatus varieties were compared.  Result   In the range of 24-96 mg·L−1, the application of magnesium reduced the vulnerability of leaf membrane to damages, increased the contents of antioxidant glutathione (GSH) and ascorbic acid (AsA) as well as the activities of photosystemⅡ (PSII), peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and monodehydroascorbate reductase (DHAR), while decreased the contents of malondialdehyde (MDA) and proline (Pro), and reduced the cell membrane permeability of the leaves. The addition also promoted the AsA-GSH cycle, photosynthesis, and the biomass accumulations on vitamin C, soluble solids, soluble protein, and soluble sugar. Among the treatments, the 48 mg·L−1 magnesium addition in the culture substrate rendered the most significant improvements on the growth and development of C. lanatus. Whereas, either a deficiency (at 0 mg·L−1) or an excess (e.g., at 192 mg·L−1) on the nutrient ill-affected the membrane lipid peroxidation and shortened the plant roots. Furthermore, the chlorophyll fluorescence declined as indicated by the lower oxygen evolution complex (OEC), quantum yield for electron transport (φEo), and receptor library capacity (Sm), the density of reaction centers (RC/CSo) decreased, the light energy absorption per unit reaction center (ABS/RC) lowered, and the dissipative (DI0/RC), capture (TR0/RC), and QA reduction rate (Mo) increased. Thus, either deprivation or over-supply of magnesium could significantly disrupt the normal photosynthetic function inhibiting the growth of C. lanatus.   Conclusion  Particularly in deficiency, but also in excess, magnesium in soil could diminish the PSII activity and retard the growth of C. lanatus. Appropriate application of the nutrient, such as at 48 mg·L−1 concentration in soil, could effectively improve the physiological activity, stabilize the structure and function of PSII, strengthen the leaf photosynthesis to result in healthy growth and high quality fruit production of C. lanatus.
  • loading
  • [1]
    赵跃, 李飒, 黄楠, 等. 减量施肥对京郊地区设施小果型西瓜产量和品质的影响 [J]. 中国瓜菜, 2020, 33(9):47−49. doi: 10.3969/j.issn.1673-2871.2020.09.009

    ZHAO Y, LI S, HUANG N, et al. Effect of reduced fertilization on the yield and quality of protected mini watermelon in Daxing district [J]. China Cucurbits and Vegetables, 2020, 33(9): 47−49.(in Chinese) doi: 10.3969/j.issn.1673-2871.2020.09.009
    [2]
    刘文革, 何楠, 赵胜杰, 等. 我国西瓜品种选育研究进展 [J]. 中国瓜菜, 2016, 29(1):1−7. doi: 10.3969/j.issn.1673-2871.2016.01.001

    LIU W G, HE N, ZHAO S J, et al. Advances in watermelon breeding in China [J]. China Cucurbits and Vegetables, 2016, 29(1): 1−7.(in Chinese) doi: 10.3969/j.issn.1673-2871.2016.01.001
    [3]
    张文, 潘顺秋, 符传良, 等. 钾镁肥在西瓜上的施用效果研究 [J]. 现代农业科技, 2010(17):108−109. doi: 10.3969/j.issn.1007-5739.2010.17.058

    ZHANG W, PAN S Q, FU C L, et al. Effect of potassium and magnesium fertilizer on Watermelon [J]. Modern Agricultural Sciences and Technology, 2010(17): 108−109.(in Chinese) doi: 10.3969/j.issn.1007-5739.2010.17.058
    [4]
    林丽琳, 陈晟, 施木田, 等. Mg对黑美人西瓜叶片C、N代谢的影响 [J]. 亚热带农业研究, 2015, 11(1):25−30.

    LIN L L, CHEN S, SHI M T, et al. Effect of magnesium on carbon and nitrogen metabolism of Heimeiren watermelon leaves [J]. Subtropical Agriculture Research, 2015, 11(1): 25−30.(in Chinese)
    [5]
    林丽琳, 陈晟, 施木田, 等. 镁对新天玲西瓜叶片光合色素、可溶性蛋白含量和硝酸还原酶活性的影响 [J]. 热带农业科学, 2015, 35(1):26−30. doi: 10.3969/j.issn.1009-2196.2015.01.007

    LIN L L, CHEN S, SHI M T, et al. Effects of magnesium on leaf photosynthesis pigments, soluble protein content and reducing nitric acid activity of xintianling watermelon [J]. Chinese Journal of Tropical Agriculture, 2015, 35(1): 26−30.(in Chinese) doi: 10.3969/j.issn.1009-2196.2015.01.007
    [6]
    BEALE S I. Enzymes of chlorophyll biosynthesis [J]. Photosynthesis Research, 1999, 60(1): 43−73. doi: 10.1023/A:1006297731456
    [7]
    熊英杰, 陈少风, 李恩香, 等. 植物缺镁研究进展及展望 [J]. 安徽农业科学, 2010, 38(15):7754−7757. doi: 10.3969/j.issn.0517-6611.2010.15.014

    XIONG Y J, CHEN S F, LI E X, et al. Research progress and outlook on magnesium deficiency in plants [J]. Journal of Anhui Agricultural Sciences, 2010, 38(15): 7754−7757.(in Chinese) doi: 10.3969/j.issn.0517-6611.2010.15.014
    [8]
    MURPHY M P. How mitochondria produce reactive oxygen species [J]. The Biochemical Journal, 2009, 417(1): 1−13. doi: 10.1042/BJ20081386
    [9]
    HERMANS C, BOURGIS F, FAUCHER M, et al. Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves [J]. Planta, 2005, 220(4): 541−549. doi: 10.1007/s00425-004-1376-5
    [10]
    YIN S T, ZE Y G, LIU C, et al. Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency [J]. Biological Trace Element Research, 2009, 132(1/2/3): 247−258.
    [11]
    李佳, 曹先梅, 刘立云, 等. 镁对槟榔幼苗光合特性和叶绿体超微结构的影响 [J]. 植物营养与肥料学报, 2019, 25(11):1949−1956. doi: 10.11674/zwyf.19158

    LI J, CAO X M, LIU L Y, et al. Effects of different magnesium nutrition levels on photosynthetic characteristics and chloroplast ultrastructure of Areca palm seedlings [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1949−1956.(in Chinese) doi: 10.11674/zwyf.19158
    [12]
    原佳乐, 马超, 冯雅岚, 等. 不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应 [J]. 植物生理学报, 2018, 54(6):1119−1129.

    YUAN J L, MA C, FENG Y L, et al. Response of chlorophyll fluorescence transient in leaves of wheats with different drought resistances to drought stresses and rehydration [J]. Plant Physiology Journal, 2018, 54(6): 1119−1129.(in Chinese)
    [13]
    王芳, 刘鹏, 史锋, 等. 镁对大豆叶片细胞膜透性和保护酶活性的影响 [J]. 植物营养与肥料学报, 2005, 11(5):659−664. doi: 10.3321/j.issn:1008-505X.2005.05.015

    WANG F, LIU P, SHI F, et al. Influences of magnesium on cell membrane permeability and activities of protective enzymes of soybean leaves [J]. Plant Nutrition and Fertilizing Science, 2005, 11(5): 659−664.(in Chinese) doi: 10.3321/j.issn:1008-505X.2005.05.015
    [14]
    林仁辉. 小白菜镁素营养生理研究[D]. 福州: 福建农林大学, 2009.

    LIN R H. Studies on magnesium nutritive physiology of pakchoi[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009. (in Chinese)
    [15]
    孙青慧. 苦瓜镁素营养生理的研究[D]. 福州: 福建农林大学, 2010.

    SUN Q H. Studies on magnesium nutrition physiology of balsam pear[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. (in Chinese)
    [16]
    凌丽俐, 黄翼, 彭良志, 等. 镁缺乏和过量胁迫对纽荷尔脐橙叶绿素荧光特性的影响 [J]. 生态学报, 2014, 34(7):1672−1680.

    LING L L, HUANG Y, PENG L Z, et al. Influence of magnesium deficiency and excess on chlorophyll fluorescence characteristics of Newhall navel orange leaves [J]. Acta Ecologica Sinica, 2014, 34(7): 1672−1680.(in Chinese)
    [17]
    申燕, 肖家欣, 杨慧, 等. 镁胁迫对春见橘橙生长和矿质元素分布及叶片超微结构的影响 [J]. 园艺学报, 2011, 38(5):849−858.

    SHEN Y, XIAO J X, YANG H, et al. Effects of magnesium stress on growth, distribution of several mineral elements and leaf ultrastructure of Harumi Tangor [J]. Acta Horticulturae Sinica, 2011, 38(5): 849−858.(in Chinese)
    [18]
    田斌, 胡玉洁, 路雪丽, 等. 镁缺乏和过量胁迫对大麦幼苗生长以及生理生化指标的影响 [J]. 杭州师范大学学报(自然科学版), 2018, 17(2):146−152.

    TIAN B, HU Y J, LU X L, et al. Effects of magnesium deficiency and excessive stress on the growth and physiological and biochemical indexes of barley seedlings [J]. Journal of Hangzhou Normal University (Natural Science Edition), 2018, 17(2): 146−152.(in Chinese)
    [19]
    林丽琳. 镁对不同基因型西瓜若干生理生化代谢指标的影响[D]. 福州: 福建农林大学, 2015.

    LIN L L. Effect of magnesium on different genotypes of watermelon in some physiological and biochemical metabolism[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese)
    [20]
    李鹏民, 高辉远, Reto J. Strasser. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用 [J]. 植物生理与分子生物学学报, 2005, 31(6):559−566.

    LI P M, GAO H Y, STRASSER R. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study [J]. Acta Photophysiologica Sinica, 2005, 31(6): 559−566.(in Chinese)
    [21]
    李合生. 植物生理生化试验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [22]
    SPYCHALLA J P, DESBOROUGH S L. Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers [J]. Plant Physiology, 1990, 94(3): 1214−1218. doi: 10.1104/pp.94.3.1214
    [23]
    NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant and Cell Physiology, 1981, 22(5): 867−880.
    [24]
    HALLIWELL B, FOYER C H. Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography [J]. Planta, 1978, 139(1): 9−17. doi: 10.1007/BF00390803
    [25]
    高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
    [26]
    李长志, 李欢, 刘庆, 等. 不同生长时期干旱胁迫甘薯根系生长及荧光生理的特性比较 [J]. 植物营养与肥料学报, 2016, 22(2):511−517. doi: 10.11674/zwyf.14513

    LI C Z, LI H, LIU Q, et al. Comparison of root development and fluorescent physiological characteristics of sweet potato exposure to drought stress in different growth stages [J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 511−517.(in Chinese) doi: 10.11674/zwyf.14513
    [27]
    ZHOU X T, ZHAO H L, CAO K, et al. Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress [J]. Frontiers in Plant Science, 2016, 7: 1823.
    [28]
    罗丽娟, 唐莉娜, 陈星峰, 等. 硅对镉胁迫下烟草叶片PSⅡ叶绿素荧光特性的影响 [J]. 烟草科技, 2019, 52(8):1−8.

    LUO L J, TANG L N, CHEN X F, et al. Effects of silicon on chlorophyll fluorescence characteristics of PSⅡ in tobacco leaves under cadmium stress [J]. Tobacco Science & Technology, 2019, 52(8): 1−8.(in Chinese)
    [29]
    耿庆伟, 邢浩, 翟衡, 等. 臭氧胁迫下不同光强与温度处理对赤霞珠葡萄叶片PSⅡ光化学活性的影响 [J]. 中国农业科学, 2019, 52(7):1183−1191. doi: 10.3864/j.issn.0578-1752.2019.07.006

    GENG Q W, XING H, ZHAI H, et al. Effects of different light intensity and temperature on PSⅡ photochemical activity in cabernet sauvignon grape leaves under ozone stress [J]. Scientia Agricultura Sinica, 2019, 52(7): 1183−1191.(in Chinese) doi: 10.3864/j.issn.0578-1752.2019.07.006
    [30]
    STRASSER B J. Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients [J]. Photosynthesis Research, 1997, 52(2): 147−155. doi: 10.1023/A:1005896029778
    [31]
    VIERLING E, KIMPEL J A. Plant responses to environmental stress [J]. Current Opinion in Biotechnology, 1992, 3(2): 164−170. doi: 10.1016/0958-1669(92)90147-B
    [32]
    沙汉景, 胡文成, 贾琰, 等. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响 [J]. 作物学报, 2017, 43(11):1677−1688. doi: 10.3724/SP.J.1006.2017.01677

    SHA H J, HU W C, JIA Y, et al. Effect of exogenous salicylic acid, proline, and γ-aminobutyric acid on yield of rice under salt stress [J]. Acta Agronomica Sinica, 2017, 43(11): 1677−1688.(in Chinese) doi: 10.3724/SP.J.1006.2017.01677
    [33]
    CAKMAK I. Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium- and potassium-deficient leaves, but not in phosphorus-deficient leaves [J]. Journal of Experimental Botany, 1994, 45(9): 1259−1266. doi: 10.1093/jxb/45.9.1259
    [34]
    袁琳, 克热木·伊力, 张利权. NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响 [J]. 植物生态学报, 2005, 29(6):985−991. doi: 10.3321/j.issn:1005-264X.2005.06.015

    YUAN L, KEREMU Y L, ZHANG L Q. Effects of nacl stress on active oxygen metabolism and membrane stability in Pistacia vera seedlings [J]. Acta Phytoecologica Sinica, 2005, 29(6): 985−991.(in Chinese) doi: 10.3321/j.issn:1005-264X.2005.06.015
    [35]
    何云, 李贤伟, 龚伟. 3种岩石边坡护坡植物叶片质膜透性和可溶性糖含量对低温胁迫的响应 [J]. 四川农业大学学报, 2012, 30(1):42−45. doi: 10.3969/j.issn.1000-2650.2012.01.008

    HE Y, LI X W, GONG W. Response of membrane permeability and soluble carbohydrate of three native Petrophile plants to low temperature stress [J]. Journal of Sichuan Agricultural University, 2012, 30(1): 42−45.(in Chinese) doi: 10.3969/j.issn.1000-2650.2012.01.008
    [36]
    王天, 宋佳承, 闫士朋, 等. 低温胁迫下磷肥施用量对油橄榄生长发育的影响 [J]. 植物营养与肥料学报, 2020, 26(5):879−890. doi: 10.11674/zwyf.19349

    WANG T, SONG J C, YAN S P, et al. Growth and development of olive under low temperature stress influenced by phosphate fertilizer application [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 879−890.(in Chinese) doi: 10.11674/zwyf.19349
    [37]
    王利界, 周智彬, 常青, 等. 盐旱交叉胁迫对灰胡杨(Populus pruinosa)幼苗生长和生理生化特性的影响 [J]. 生态学报, 2018, 38(19):7026−7033.

    WANG L J, ZHOU Z B, CHANG Q, et al. Growth, physiological and biochemical characteristics of Populus pruinosa seedlings under salt-drought stress [J]. Acta Ecologica Sinica, 2018, 38(19): 7026−7033.(in Chinese)
    [38]
    XUE Y F, LIU Z P. Antioxidant enzymes and physiological characteristics in two Jerusalem artichoke cultivars under salt stress [J]. Russian Journal of Plant Physiology, 2008, 55(6): 776−781. doi: 10.1134/S102144370806006X
    [39]
    PU F, REN X L. Ascorbate levels and activities of enzymes related to the glutathione-ascorbate cycle in fruits of Chinese persimmon cultivars [J]. Horticulture, Environment, and Biotechnology, 2014, 55(4): 315−321. doi: 10.1007/s13580-014-0177-4
    [40]
    NISHIKAWA F. Ascorbate metabolism in harvested broccoli [J]. Journal of Experimental Botany, 2003, 54(392): 2439−2448. doi: 10.1093/jxb/erg283
    [41]
    STRASSER B J, STRASSER R J. Measuring fast fluorescence transients to address environmental questions: The JIP-test[M]//Photosynthesis: from Light to Biosphere. Dordrecht: Springer Netherlands, 1995: 4869-4872.
    [42]
    IMAHORI Y, BAI J H, BALDWIN E. Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments [J]. Scientia Horticulturae, 2016, 198: 398−406. doi: 10.1016/j.scienta.2015.12.006
    [43]
    GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiology and Biochemistry, 2010, 48(12): 909−930. doi: 10.1016/j.plaphy.2010.08.016
    [44]
    JOZEFCZAK M, REMANS T, VANGRONSVELD J, et al. Glutathione is a key player in metal-induced oxidative stress defenses [J]. International Journal of Molecular Sciences, 2012, 13(3): 3145−3175. doi: 10.3390/ijms13033145
    [45]
    MAY M J, VERNOUX T, LEAVER C, et al. Glutathione homeostasis in plants: Implications for environmental sensing and plant development [J]. Journal of Experimental Botany, 1998, 49(321): 649−667.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (466) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return