• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
JIANG Y, ZHANG Z H, JIA Y Z, et al. Effects of Phosphorus Fertilizations on Growth and Root Mycorrhizal Infection of Tomato Seedlings Intercropped with Potato-onion [J]. Fujian Journal of Agricultural Sciences,2022,37(3):326−334 doi: 10.19303/j.issn.1008-0384.2022.003.007
Citation: JIANG Y, ZHANG Z H, JIA Y Z, et al. Effects of Phosphorus Fertilizations on Growth and Root Mycorrhizal Infection of Tomato Seedlings Intercropped with Potato-onion [J]. Fujian Journal of Agricultural Sciences,2022,37(3):326−334 doi: 10.19303/j.issn.1008-0384.2022.003.007

Effects of Phosphorus Fertilizations on Growth and Root Mycorrhizal Infection of Tomato Seedlings Intercropped with Potato-onion

doi: 10.19303/j.issn.1008-0384.2022.003.007
  • Received Date: 2022-01-22
  • Rev Recd Date: 2022-02-22
  • Available Online: 2022-04-24
  • Publish Date: 2022-03-31
  •   Objective  Roles of phosphorus application on growth and root mycorrhizal infection rate of tomato seedlings intercropped with potato-onion were investigated to optimize the fertilization for sustainable crop production and agricultural ecosystem.  Methods  Tomato (Solanum lycopersicum L.) seedlings were either grown under monoculture (T) or intercropping with potato-onion (Allium cepa L. var. aggregatum G. Don) (TO) in a pot experiment. Biomass, root mycorrhizal infection rate, and nutrient concentrations of the tomato plants, as well as the nutrient contents in the soil treated with varied phosphorus applications, i.e., 0 P (P0), 250mg P·kg−1 (P250), 500mg P·kg−1 (P500), and 1,000mg P·kg−1 (P1000), were monitored.  Results  Compared to P0, the dry weight of the monocultured tomato plant under P250 increased by 43.18%, under P500 by 47.73%, and under P1000 by 47.02%, while the intercropping under P250 resulted in an increase of 45.93%, under P500 50.36%, and under P1000 40.89%. At same P application level from T to TO, the tomato plant weight increased 8.8% under P0, 13.6% under P250, 15.2% under P500, and 5.6% under P1000. P250, P500, and P1000 enhanced the biomass production as well as the nutrient concentration and uptake of the tomato plants. The applications also increased the available P and K in soil with a significant positive correlation. At P500, the greatest and significantly higher than other treatments on plant biomass and root mycorrhizal infection rates of the tomato plants were observed.  Conclusion  P played an important role in the interaction between tomato and potato-onion. At the 500 mg·kg−1 application level, P maximized the interaction and enhanced the tomato root mycorrhizal infection which facilitated transfer of nutrients from soil to plant promoting the growth.
  • loading
  • [1]
    PARK E J, JEKNIĆ Z, SAKAMOTO A, et al. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage [J]. The Plant Journal, 2004, 40(4): 474−487. doi: 10.1111/j.1365-313X.2004.02237.x
    [2]
    ZUSHI K, KAJIWARA S, MATSUZOE N. Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit [J]. Scientia Horticulturae, 2012, 148: 39−46. doi: 10.1016/j.scienta.2012.09.022
    [3]
    LIU T J, CHENG Z H, MENG H W, et al. Growth, yield and quality of spring tomato and physicochemical properties of medium in a tomato/garlic intercropping system under plastic tunnel organic medium cultivation [J]. Scientia Horticulturae, 2014, 170: 159−168. doi: 10.1016/j.scienta.2014.02.039
    [4]
    LI L, TILMAN D, LAMBERS H, et al. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture [J]. New Phytologist, 2014, 203(1): 63−69. doi: 10.1111/nph.12778
    [5]
    LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192−11196. doi: 10.1073/pnas.0704591104
    [6]
    LAMBERS H, CLEMENTS J C, NELSON M N. How a phosphorus-acquisition strategy based on carboxylate exudation Powers the success and agronomic potential of lupines (Lupinus, Fabaceae) [J]. American Journal of Botany, 2013, 100(2): 263−288. doi: 10.3732/ajb.1200474
    [7]
    CHEN B D, LI X J, XU T L, et al. Advances in the biogeography of arbuscular mycorrhizal fungi [J]. Acta Ecologica Sinica, 2018, 38(4): 1167−1175.
    [8]
    GAO D M, PAN X J, ZHOU X G, et al. Phosphorus fertilization and intercropping interactively affect tomato and potato onion growth and rhizosphere arbuscular mycorrhizal fungal community [J]. Archives of Agronomy and Soil Science, 2021, 67(7): 919−933. doi: 10.1080/03650340.2020.1768530
    [9]
    REN L X, LOU Y S, ZHANG N, et al. Role of arbuscular mycorrhizal network in carbon and phosphorus transfer between plants [J]. Biology and Fertility of Soils, 2013, 49(1): 3−11. doi: 10.1007/s00374-012-0689-y
    [10]
    WALDER F, NIEMANN H, NATARAJAN M, et al. Mycorrhizal networks: Common goods of plants shared under unequal terms of trade [J]. Plant Physiology, 2012, 159(2): 789−797. doi: 10.1104/pp.112.195727
    [11]
    周佳琦, 张钰, 张梦燚, 等. 丛枝菌根真菌对基质栽培叶用莴苣和菠菜氮肥用量的减施效果 [J]. 中国蔬菜, 2021(10):57−65.

    ZHOU J Q, ZHANG Y, ZHANG M Y, et al. Effect of arbuscular mycorrhizal fungi on reducing nitrogen fertilizer dosage in substrate cultivation of lettuce and spinach [J]. China Vegetables, 2021(10): 57−65.(in Chinese)
    [12]
    TIAN X L, WANG C B, BAO X G, et al. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping [J]. Plant and Soil, 2019, 436(1/2): 173−192.
    [13]
    CHIFFLOT V, RIVEST D, OLIVIER A, et al. Molecular analysis of arbuscular mycorrhizal community structure and spores distribution in tree-based intercropping and forest systems [J]. Agriculture, Ecosystems & Environment, 2009, 131(1/2): 32−39.
    [14]
    李灵芝, 行园园, 盖京苹, 等. 不同氮肥及有机肥投入对设施番茄菜地AM真菌侵染势和空间分布的影响 [J]. 中国蔬菜, 2015(4):49−53. doi: 10.3969/j.issn.1000-6346.2015.04.014

    LI L Z, XING Y Y, GAI J P, et al. Effects of different nitrogen and organic manure application on infection potential and spatial distribution of arbuscular mycorrhizal fungi in greenhouse tomato cropping system [J]. China Vegetables, 2015(4): 49−53.(in Chinese) doi: 10.3969/j.issn.1000-6346.2015.04.014
    [15]
    陈远学, 李汉邯, 周涛, 等. 施磷对间套作玉米叶面积指数、干物质积累分配及磷肥利用效率的影响 [J]. 应用生态学报, 2013, 24(10):2799−2806.

    CHEN Y X, LI H H, ZHOU T, et al. Effects of phosphorus fertilization on leaf area index, biomass accumulation and allocation, and phosphorus use efficiency of intercropped maize [J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2799−2806.(in Chinese)
    [16]
    付彦祥, 李乃荟, 刘佳遥, 等. 伴生分蘖洋葱对番茄根际微生物群落结构的影响 [J]. 中国蔬菜, 2020(6):49−57.

    FU Y X, LI N H, LIU J Y, et al. Effects of concomitant tillering onion on microbial community structure in tomato rhizosphere soil [J]. China Vegetables, 2020(6): 49−57.(in Chinese)
    [17]
    TRINGOVSKA I, YANKOVA V, MARKOVA D, et al. Effect of companion plants on tomato greenhouse production [J]. Scientia Horticulturae, 2015, 186: 31−37. doi: 10.1016/j.scienta.2015.02.016
    [18]
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
    [19]
    郭涛, 申鸿, 彭思利, 等. 氮、磷供给水平对丛枝菌根真菌生长发育的影响 [J]. 植物营养与肥料学报, 2009, 15(3):690−695. doi: 10.3321/j.issn:1008-505X.2009.03.030

    GUO T, SHEN H, PENG S L, et al. Influence of nitrogen and phosphorus supplying levels on development of arbuscular mycorrhizal fungi [J]. Plant Nutrition and Fertilizer Science, 2009, 15(3): 690−695.(in Chinese) doi: 10.3321/j.issn:1008-505X.2009.03.030
    [20]
    邓杰, 李芳, 古丽君, 等. 不同土壤pH下AM真菌对苜蓿苗期生长的影响 [J]. 草业科学, 2019, 36(11):2854−2862.

    DENG J, LI F, GU L J, et al. Effect of arbuscular mycorrhizal fungi on alfalfa seedling growth at different soil pH [J]. Pratacultural Science, 2019, 36(11): 2854−2862.(in Chinese)
    [21]
    LUO Y F, WANG Z K, HE Y L, et al. High-throughput sequencing analysis of the rhizosphere arbuscular mycorrhizal fungi (AMF) community composition associated with Ferula sinkiangensis [J]. BMC Microbiology, 2020, 20(1): 335. doi: 10.1186/s12866-020-02024-x
    [22]
    初亚男, 张海波, 秦泽峰, 等. AM真菌与非菌根植物的相互作用关系 [J]. 应用生态学报, 2018, 29(1):321−326.

    CHU Y N, ZHANG H B, QIN Z F, et al. Relationship of AM fungi with non-mycorrhizal plants [J]. Chinese Journal of Applied Ecology, 2018, 29(1): 321−326.(in Chinese)
    [23]
    BAIRD J M, WALLEY F L, SHIRTLIFFE S J. Arbuscular mycorrhizal fungi colonization and phosphorus nutrition in organic field pea and lentil [J]. Mycorrhiza, 2010, 20(8): 541−549. doi: 10.1007/s00572-010-0305-7
    [24]
    郭艳娥, 李应德, 高萍, 等. 不同磷水平下幼套球囊霉与禾草内生真菌对多年生黑麦草生长的影响 [J]. 草地学报, 2018, 26(6):1458−1466.

    GUO Y E, LI Y D, GAO P, et al. Effects of Claroideoglomus etunicatum and grass endophyte on the growth of Lolium perenne under different phosphorus levels [J]. Acta Agrestia Sinica, 2018, 26(6): 1458−1466.(in Chinese)
    [25]
    彭琪, 何红花, 张兴昌. 低磷环境下接种丛枝菌根真菌促进紫花苜蓿生长和磷素吸收的机理 [J]. 植物营养与肥料学报, 2021, 27(2):293−300. doi: 10.11674/zwyf.20385

    PENG Q, HE H H, ZHANG X C. Mechanisms of increasing alfalfa growth and phosphorus uptake by inoculation with arbuscular mycorrhizal fungal under low phosphorus application level [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 293−300.(in Chinese) doi: 10.11674/zwyf.20385
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (434) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return