• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
LI J Q, SONG W X, MENG J R, et al. Inhibitory Activity and Mechanism of Bacillus velezensi Strains against Soil-borne Pathogens [J]. Fujian Journal of Agricultural Sciences,2022,37(3):371−380 doi: 10.19303/j.issn.1008-0384.2022.003.012
Citation: LI J Q, SONG W X, MENG J R, et al. Inhibitory Activity and Mechanism of Bacillus velezensi Strains against Soil-borne Pathogens [J]. Fujian Journal of Agricultural Sciences,2022,37(3):371−380 doi: 10.19303/j.issn.1008-0384.2022.003.012

Inhibitory Activity and Mechanism of Bacillus velezensi Strains against Soil-borne Pathogens

doi: 10.19303/j.issn.1008-0384.2022.003.012
  • Received Date: 2021-11-02
  • Rev Recd Date: 2022-02-25
  • Available Online: 2022-03-21
  • Publish Date: 2022-03-28
  •   Objective  Inhibitory activities and antagonistic mechanisms of Bacillus velezensi (Bv) strains against certain soil-borne pathogens were studied in search for new venues of biological disease control.  Method  Antagonism of 6 Bv strains, NN01, NN02, NN04, NN05, NN88, and NN95, on 7 soil-borne pathogens, Fusarium oxysporum f. sp. cubense, Sclerotinia sclerotiorum, Scleritium rolfsii, Botrytis cinerea, Rhizoctonia solani, and Phytophthora nicotianae, were studied using a plate confrontation test. Morphological responses of the pathogen mycelia to the Bv strains were observed under an optic microscope, and the control efficacy verified in vitro on mulberry and lettuce leaves. Activities of the extracellular enzymes (e.g., cellulase, protease, and β-1,3-glucanase) produced by the Bv strains were identified with differential media, and 10 antibiotic-related genes (i.e., mycB, fenB, ituA, sfp, bamC, Erisa, spaS, bacA, yndJ, and Qk ) in the bacteria detected by PCR amplification with specific primers.  Result  To varying extents the 6 Bv strains inhibited the mycelia growth of the 6 target pathogens. The strongest effect was shown on S. rolfsii. NN01, NN02, NN04, and NN88 displayed inhibition rates ranging from 40.56% to 56.30% on F. oxysporum. The appearance of mycelia on edge of inhibition rings changed significantly with broken, leaking intracellular substances, and darked color. In vitro the Bv strains significantly inhibited disease development on the plant leaves by S. sclerotiorum with a control effect of 53.40-71.32% and 43.57-65.68% by S. rolfsii, which were higher than or equal to the inhibition by B. subtilis. All 6 Bv strains secreted proteases and cellulases with the presence of 5 lipopeptide antibiotic-related genes (i.e., mycB, fenB, ituA, bacA, and yndJ), except no fenB found in NN95.   Conclusion  All 6 Bv strains had varying inhibitory effects against the 7 soil-borne pathogens. They showed extracellular protease and cellulase activities, and almost all of them carried 5 lipopeptide antibiotic-related genes. These Bv strains could potentially be applied as biocontrol agents for control of diseases caused by the soil-borne pathogens.
  • loading
  • [1]
    MARK M, SHIRI F. Prospects for biological soilborne disease control: Application of indigenous versus synthetic microbiomes [J]. Phytopathology, 2017, 107(3): 256−263. doi: 10.1094/PHYTO-09-16-0330-RVW
    [2]
    黄新琦, 蔡祖聪. 土壤微生物与作物土传病害控制 [J]. 中国科学院院刊, 2017, 32(6):593−600.

    HUANG X Q, CAI Z C. Soil microbes and control of soil-borne diseases [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(6): 593−600.(in Chinese)
    [3]
    李文静, 王秋霞, 李园, 等. 我国防治主要土传病害的农药登记和推广情况 [J]. 农药, 2021, 60(8):547−554,570.

    LI W J, WANG Q X, LI Y, et al. Current situation of pesticides for control of mainly soil-borne diseases registration, extension and application in China [J]. Agrochemicals, 2021, 60(8): 547−554,570.(in Chinese)
    [4]
    曹坳程, 刘晓漫, 郭美霞, 等. 作物土传病害的危害及防治技术 [J]. 植物保护, 2017, 43(2):6−16. doi: 10.3969/j.issn.0529-1542.2017.02.002

    CAO A C, LIU X M, GUO M X, et al. Incidences of soil-borne diseases and control measures [J]. Plant Protection, 2017, 43(2): 6−16.(in Chinese) doi: 10.3969/j.issn.0529-1542.2017.02.002
    [5]
    李兴龙, 李彦忠. 土传病害生物防治研究进展 [J]. 草业学报, 2015, 24(3):204−212. doi: 10.11686/cyxb20150321

    LI X L, LI Y Z. Research advances in biological control of soil-borne disease [J]. Acta Prataculturae Sinica, 2015, 24(3): 204−212.(in Chinese) doi: 10.11686/cyxb20150321
    [6]
    高游慧, 郑泽慧, 张越, 等. 根际微生态防治作物土传真菌病害的机制研究进展 [J]. 中国农业大学学报, 2021, 26(6):100−113. doi: 10.11841/j.issn.1007-4333.2021.06.11

    GAO Y H, ZHENG Z H, ZHANG Y, et al. Mechanism of rhizosphere micro-ecology in controlling soil-borne fungal diseases: A review [J]. Journal of China Agricultural University, 2021, 26(6): 100−113.(in Chinese) doi: 10.11841/j.issn.1007-4333.2021.06.11
    [7]
    刘磊, 梁昌聪, 曾迪, 等. 芽胞杆菌次生代谢产物及其在土传病害防控中的应用研究进展 [J]. 热带作物学报, 2017, 38(4):775−782. doi: 10.3969/j.issn.1000-2561.2017.04.030

    LIU L, LIANG C C, ZENG D, et al. Research progress on secondary metabolites of Bacillus spp. and their applications in biocontrol of soil-borne diseases [J]. Chinese Journal of Tropical Crops, 2017, 38(4): 775−782.(in Chinese) doi: 10.3969/j.issn.1000-2561.2017.04.030
    [8]
    BUBICI G, KAUSHAL M, PRIGIGALLO M I, et al. Biological control agents against Fusarium wilt of banana [J]. Frontiers in Microbiology, 2019, 10: 616. doi: 10.3389/fmicb.2019.00616
    [9]
    MILJAKOVIC D, MARINKOVIC J, BALESEVIC TUBIC S. The Significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops [J]. Microorganisms, 2020, 8(7): 1037. doi: 10.3390/microorganisms8071037
    [10]
    NIU B, WANG W X, YUAN Z B, et al. Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease [J]. Frontiers in Microbiology, 2020, 11: 585404. doi: 10.3389/fmicb.2020.585404
    [11]
    ADENIJI A A, LOOTS D T, BABALOLA O O. Bacillus velezensis: Phylogeny, useful applications, and avenues for exploitation [J]. Applied Microbiology and Biotechnology, 2019, 103(9): 3669−3682. doi: 10.1007/s00253-019-09710-5
    [12]
    JIANG C H, LIAO M J, WANG H K, et al. Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinereal [J]. Biological Control, 2018, 126: 147−157. doi: 10.1016/j.biocontrol.2018.07.017
    [13]
    陶永梅, 潘洪吉, 黄健, 等. 新型生防微生物因子贝莱斯芽孢杆菌(Bacillus velezensis)的研究与应用 [J]. 中国植保导刊, 2019, 39(9):26−33. doi: 10.3969/j.issn.1672-6820.2019.09.004

    TAO Y M, PAN H J, HUANG J, et al. Research and application of a novel bio-control microbial factor Bacillus velezensis [J]. China Plant Protection, 2019, 39(9): 26−33.(in Chinese) doi: 10.3969/j.issn.1672-6820.2019.09.004
    [14]
    张彩文, 程坤, 张欣, 等. 贝莱斯芽胞杆菌(Bacillus velezensis)分类学及功能研究进展 [J]. 食品与发酵工业, 2019, 45(17):258−265.

    ZHANG C W, CHENG K, ZHANG X, et al. Taxonomy and functions of Bacillus velezensis: A review [J]. Food and Fermentation Industries, 2019, 45(17): 258−265.(in Chinese)
    [15]
    FAN B, WANG C, SONG X F, et al. Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol [J]. Frontiers in Microbiology, 2018, 9: 2491. doi: 10.3389/fmicb.2018.02491
    [16]
    沙月霞, 隋书婷, 曾庆超, 等. 贝莱斯芽孢杆菌E69预防稻瘟病等多种真菌病害的潜力 [J]. 中国农业科学, 2019, 52(11):1908−1917. doi: 10.3864/j.issn.0578-1752.2019.11.006

    SHA Y X,SUI S T, ZENGQ C, et al. Biocontrol potential of Bacillus velezensis strain E69 against rice blast and other fungal diseases [J]. Scientia Agricultura Sinica, 2019, 52(11): 1908−1917.(in Chinese) doi: 10.3864/j.issn.0578-1752.2019.11.006
    [17]
    赵昱榕, 李磊, 谢学文, 等. 贝莱斯芽胞杆菌ZF2对多主棒孢病菌防治效果 [J]. 中国生物防治学报, 2019, 35(2):217−225.

    ZHAO Y R, LI L, XIE X W, et al. Biocontrol effect of Bacillus velezensis strain ZF2 against Corynespora cassiicola [J]. Chinese Journal of Biological Control, 2019, 35(2): 217−225.(in Chinese)
    [18]
    崔文会, 孙雪, 梁承宇, 等. 土传真菌病害拮抗菌的筛选及其生防效果研究 [J]. 工业微生物, 2020, 50(2):41−47. doi: 10.3969/j.issn.1001-6678.2020.02.007

    CUI W H, SUN X, LIANG C Y, et al. Screening of antagonistic bacteria against soil-borne pathogenic fungi and evaluation of their biocontrol effects [J]. Industrial Microbiology, 2020, 50(2): 41−47.(in Chinese) doi: 10.3969/j.issn.1001-6678.2020.02.007
    [19]
    王瑞昊, 邓业成, 陈广桂, 等. 罗汉果土传病害拮抗细菌的筛选及鉴定 [J]. 福建农业学报, 2021, 36(8):927−935.

    WANG R H, DENG Y C, CHEN G G, et al. Antagonistic bacteria against soil-borne diseases on Siraitia grosvenorii [J]. Fujian Journal of Agricultural Sciences, 2021, 36(8): 927−935.(in Chinese)
    [20]
    许帅, 谢学文, 张昀, 等. 马铃薯枯萎病生防芽胞杆菌筛选及生防效果研究 [J]. 中国生物防治学报, 2020, 36(5):761−770.

    XU S, XIE X W, ZHANG Y, et al. Screening of biocontrol Bacillus isolate against potato Fusarium wilt and its biocontrol effect [J]. Chinese Journal of Biological Control, 2020, 36(5): 761−770.(in Chinese)
    [21]
    MARTÍNEZ-RAUDALES I, DE LA CRUZ-RODRÍGUEZ Y, ALVARADO-GUTIÉRREZ A, et al. Draft genome sequence of Bacillus velezensis 2A-2B strain: A rhizospheric inhabitant of Sporobolus airoides (Torr. ) Torr., with antifungal activity against root rot causing phytopathogens [J]. Standards in Genomic Sciences, 2017, 12: 73. doi: 10.1186/s40793-017-0289-4
    [22]
    蒙月月. 桑树细菌性枯萎病菌生物学特性研究及其拮抗细菌和防治药剂筛选 [D]. 南宁: 广西大学, 2014.

    MENG Y Y. Research on biological characteristics of mulberry bacterial wilt pathogens, and screening of its antagonistic bacterials and bactericides [D]. Nanning: Guangxi University, 2014. (in Chinese)
    [23]
    宋文欣, 陈清华, 杨惠贞, 等. 桑枝枯菌核病病菌拮抗芽孢杆菌的筛选和鉴定 [J]. 江苏农业科学, 2020, 48(22):106−110.

    SONG W X, CHEN Q H, YANG H Z, et al. Screening and identification of antagonistic Bacillus spp. against Sclerotinia sclertiorum [J]. Jiangsu Agricultural Sciences, 2020, 48(22): 106−110.(in Chinese)
    [24]
    夏京津, 陈建武, 宋怿, 等. 解淀粉芽孢杆菌HE活性成分鉴定及抗菌特性分析 [J]. 南方水产科学, 2019, 15(3):41−49.

    XIA J J, CHEN J W, SONG Y, et al. Identification of antibacterial substances from Bacillus amyloliquefaciens HE and analysis of antibacterial characteristics [J]. South China Fisheries Science, 2019, 15(3): 41−49.(in Chinese)
    [25]
    曲晓旭, 刘洪霞, 高玲, 等. 芽孢杆菌产抗菌脂肽调控基因快速检测 [J]. 南京农业大学学报, 2016, 39(5):858−864. doi: 10.7685/jnau.201601042

    QU X X, LIU H X, GAO L, et al. Rapid identification of the encoding genes of antimicrobial lipopeptides producted by Bacillus [J]. Journal of Nanjing Agricultural University, 2016, 39(5): 858−864.(in Chinese) doi: 10.7685/jnau.201601042
    [26]
    冉军舰, 徐剑宏, 胡晓丹, 等. 1株产脂肽类抗生素芽孢杆菌的鉴定及脂肽类抗生素相关基因克隆 [J]. 食品科学, 2016, 37(17):127−132. doi: 10.7506/spkx1002-6630-201617021

    RAN J J, XU J H, HU X D, et al. Identification of a Bacillus strain producing lipopeptide and cloning of genes related to lipopeptide [J]. Food Science, 2016, 37(17): 127−132.(in Chinese) doi: 10.7506/spkx1002-6630-201617021
    [27]
    武利勤, 尚宏忠, 顾海科. 拮抗匍枝根霉的生防菌R1B的筛选鉴定和抑菌活性分析 [J]. 生物技术通报, 2019, 35(4):29−35.

    WU L Q, SHANG H Z, GU H K. Screening, identification of biocontrol bacterium R1B against Rhizopus stolonifer and analysis of its antagonistic characteristics? [J]. Biotechnology Bulletin, 2019, 35(4): 29−35.(in Chinese)
    [28]
    JOSHI R, MCSPADDEN GARDENER B B. Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis [J]. Phytopathology, 2006, 96(2): 145−154. doi: 10.1094/PHYTO-96-0145
    [29]
    程凯, 江欢欢, 沈标, 等. 棉花黄萎病拮抗菌的筛选及其生物防治效果 [J]. 植物营养与肥料学报, 2011, 17(1):166−174. doi: 10.11674/zwyf.2011.0123

    CHENG K, JIANG H H, SHEN B, et al. Isolation and biological control effects of cotton Verticilium wilt antagonist [J]. Plant Nutrition and Fertilizer Science, 2011, 17(1): 166−174.(in Chinese) doi: 10.11674/zwyf.2011.0123
    [30]
    RABBEE M F, ALI M S, CHOI J, et al. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes [J]. Molecules, 2019, 24(6): 1046. doi: 10.3390/molecules24061046
    [31]
    MARDANOVA AM, FANISOVNA HADIEVA G, TAFKILEVICH LUTFULLIN M, et al. Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi [J]. Agricultural Sciences, 2017, 8(1): 1−20. doi: 10.4236/as.2017.81001
    [32]
    邓永卓, 张家宁, 邓爽, 等. 伊枯草菌素类抗菌肽抑菌活性及机理研究进展 [J]. 中国抗生素杂志, 2020, 45(7):639−645. doi: 10.3969/j.issn.1001-8689.2020.07.002

    DENG Y Z, ZHANG J N, DENG S, et al. Progress on the antibacterial activity and antibacterial mechanisms of iturins [J]. Chinese Journal of Antibiotics, 2020, 45(7): 639−645.(in Chinese) doi: 10.3969/j.issn.1001-8689.2020.07.002
    [33]
    NANNAN C, VU H Q, GILLIS A, et al. Bacilysin within the Bacillus subtilis group: Gene prevalence versus antagonistic activity against Gram-negative foodborne pathogens [J]. Journal of Biotechnology, 2021, 327: 28−35. doi: 10.1016/j.jbiotec.2020.12.017
    [34]
    吴黎明, 李曦, 伍辉军, 等. 芽胞杆菌抗菌二肽溶杆菌素的研究进展 [J]. 南京农业大学学报, 2018, 41(5):778−783. doi: 10.7685/jnau.201803047

    WU L M, LI X, WU H J, et al. Research advances on bacilysin from Bacillus [J]. Journal of Nanjing Agricultural University, 2018, 41(5): 778−783.(in Chinese) doi: 10.7685/jnau.201803047
    [35]
    杨迪, 杜婵娟, 张晋, 等. 香蕉枯萎病拮抗菌贝莱斯芽胞杆菌的筛选鉴定及其生物学特性 [J]. 中国生物防治学报, 2021, 37(1):165−171.

    YANG D, DU C J, ZHANG J, et al. Screening, identification and biological characteristics of Bacillus velezensis with antagonst activity against banana Fusarium wilt [J]. Chinese Journal of Biological Control, 2021, 37(1): 165−171.(in Chinese)
    [36]
    赵鹏鹏, 雷淑珍, 徐晓光, 等. 培养基组成对贝莱斯芽孢杆菌产抑真菌成分的影响 [J]. 食品与发酵工业, 2020, 46(5):147−151.

    ZHAO P P, LEI S Z, XU X G, et al. Effect of medium compositions on the production of antifungal components by Bacillus velezensis [J]. Food and Fermentation Industries, 2020, 46(5): 147−151.(in Chinese)
    [37]
    LECLÈRE V, BÉCHET M, ADAM A, et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities [J]. Applied and Environmental Microbiology, 2005, 71(8): 4577−4584. doi: 10.1128/AEM.71.8.4577-4584.2005
    [38]
    黄伟, 张丽娟, 秦新政, 等. 贝莱斯芽胞杆菌JK19发酵液稳定性及抑菌物质初步分析 [J]. 中国生物防治学报, 2021, 38(1): 73-80.

    HUANG W, ZHANG L J, QIN X Z, et al. Preliminary analysis of stability and antimicrobial substances in fermentation broth of Bacillus velezensis JK19[J]. Chinese Journal of Biological Control, 2021, 38(1): 73-80.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (486) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return