• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
ZHANG J L, LINGHU Y F, DUAN S Y, et al. Prediction and Verification of sRNA SdsR Target Genes in Salmonella typhimurium [J]. Fujian Journal of Agricultural Sciences,2022,37(4):439−444 doi: 10.19303/j.issn.1008-0384.2022.004.003
Citation: ZHANG J L, LINGHU Y F, DUAN S Y, et al. Prediction and Verification of sRNA SdsR Target Genes in Salmonella typhimurium [J]. Fujian Journal of Agricultural Sciences,2022,37(4):439−444 doi: 10.19303/j.issn.1008-0384.2022.004.003

Prediction and Verification of sRNA SdsR Target Genes in Salmonella typhimurium

doi: 10.19303/j.issn.1008-0384.2022.004.003
  • Received Date: 2021-12-02
  • Rev Recd Date: 2022-03-09
  • Available Online: 2022-06-19
  • Publish Date: 2022-04-28
  •   Objective   Target genes of Salmonella Typhimurium sRNA SdsR were investigated to further understand the interactions between the sRNA and the target genes as well as the pathogenic mechanism of S. typhimurium.   Method   The TargetRNA2 software was used to predict the target of sRNA SdsR in the pathogen. According to the results obtained in a previous sRNA SdsR knock-out transcriptome sequencing study, the predicted genes were annotated into GO, KEGG, and eggNOG databases for analysis. Those with high hybridization energy were further verified by RT-qPCR.   Result   There were 29 targets predicted by TargetRNA2. Among them, hemA, STM0951, mreC, STM1252, and dcoC showed high hybridization energy with a possibility of having a continuous base to match the sRNA SdsR. They might be associated with the heme synthesis, redox process, oxaloacetate decarboxylase synthesis, and membrane components and cytoplasmic protein synthesis in S. typhimurium. The RT-qPCR showed, after sRNA SdsR knockout, hemA to be downregulated by 0.70 times and mreC 0.39 times, while STM0951, STM1252, and dcoC upregulated by 0.51, 0.35 and 1.86 times, respectively, over the wild strain 3409.   Conclusion   It appeared that the genes identified in this study, including hemA, STM0951, mreC, STM1252 and dcoC, could directly be regulated by the sRNA SdsR and might affect the expressions of some target genes.
  • loading
  • [1]
    FRÖHLICH K S, PAPENFORT K. Regulation outside the box: New mechanisms for small RNAs [J]. Molecular Microbiology, 2020, 114(3): 363−366. doi: 10.1111/mmi.14523
    [2]
    RYAN D, MUKHERJEE M, SUAR M. The expanding targetome of small RNAs in Salmonella Typhimurium [J]. Biochimie, 2017, 137: 69−77. doi: 10.1016/j.biochi.2017.03.005
    [3]
    WATERS L S, STORZ G. Regulatory RNAs in bacteria [J]. Cell, 2009, 136(4): 615−628. doi: 10.1016/j.cell.2009.01.043
    [4]
    MELAMED S, PEER A, FAIGENBAUM-ROMM R, et al. Global mapping of small RNA-target interactions in bacteria [J]. Molecular Cell, 2016, 63(5): 884−897. doi: 10.1016/j.molcel.2016.07.026
    [5]
    BOUVIER M, SHARMA C M, MIKA F, et al. Small RNA binding to 5' mRNA coding region inhibits translational initiation [J]. Molecular Cell, 2008, 32(6): 827−837. doi: 10.1016/j.molcel.2008.10.027
    [6]
    FRÖHLICH K S, PAPENFORT K, BERGER A A, et al. A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD [J]. Nucleic Acids Research, 2011, 40(8): 3623−3640.
    [7]
    FRÖHLICH K S, HANEKE K, PAPENFORT K, et al. The target spectrum of SdsR small RNA in Salmonella [J]. Nucleic Acids Research, 2016, 44(21): 10406−10422.
    [8]
    TJADEN B, GOODWIN S S, OPDYKE J A, et al. Target prediction for small, noncoding RNAs in bacteria [J]. Nucleic Acids Research, 2006, 34(9): 2791−2802. doi: 10.1093/nar/gkl356
    [9]
    BUSCH A, RICHTER A S, BACKOFEN R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions [J]. Bioinformatics, 2008, 24(24): 2849−2856. doi: 10.1093/bioinformatics/btn544
    [10]
    EGGENHOFER F, TAFER H, STADLER P F, et al. RNApredator: fast accessibility-based prediction of sRNA targets [J]. Nucleic Acids Research, 2011, 39(S2): W149−W154.
    [11]
    KERY M B, FELDMAN M, LIVNY J, et al. TargetRNA2: identifying targets of small regulatory RNAs in bacteria [J]. Nucleic Acids Research, 2014, 42(W1): W124−W129. doi: 10.1093/nar/gku317
    [12]
    CHOI J S, KIM W, SUK S, et al. The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli [J]. RNA Biology, 2018, 15(10): 1319−1335. doi: 10.1080/15476286.2018.1532252
    [13]
    VOGEL J, LUISI B F. Hfq and its constellation of RNA [J]. Nature Reviews Microbiology, 2011, 9(8): 578−589. doi: 10.1038/nrmicro2615
    [14]
    MORITA T, MAKI K, AIBA H. RNase E-based ribonucleoprotein complexes: Mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs [J]. Genes & Development, 2005, 19(18): 2176−2186.
    [15]
    PFEIFFER V, PAPENFORT K, LUCCHINI S, et al. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation [J]. Nature Structural & Molecular Biology, 2009, 16(8): 840−846.
    [16]
    PAPENFORT K, SAID N, WELSINK T, et al. Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA [J]. Molecular Microbiology, 2009, 74(1): 139−158. doi: 10.1111/j.1365-2958.2009.06857.x
    [17]
    PAPENFORT K, BOUVIER M, MIKA F, et al. Evidence for an autonomous 5' target recognition domain in an Hfq-associated small RNA [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47): 20435−20440. doi: 10.1073/pnas.1009784107
    [18]
    RICE J B, VANDERPOOL C K. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes [J]. Nucleic Acids Research, 2011, 39(9): 3806−3819. doi: 10.1093/nar/gkq1219
    [19]
    WANG L, ELLIOTT M, ELLIOTT T. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium [J]. Journal of Bacteriology, 1999, 181(4): 1211−1219. doi: 10.1128/JB.181.4.1211-1219.1999
    [20]
    程兴军, 刘马峰, 程安春. 革兰氏阴性菌血红素转运系统结构及功能特点 [J]. 中国生物化学与分子生物学报, 2014, 30(9):848−855.

    CHENG X J, LIU M F, CHENG A C. Structural and functional properties of the heme acquisition system in gram-negative bacteria [J]. Chinese Journal of Biochemistry and Molecular Biology, 2014, 30(9): 848−855.(in Chinese)
    [21]
    MACHADO I, GARRIDO V, HERNANDEZ L I, et al. Rapid and specific detection of Salmonella infections using chemically modified nucleic acid probes [J]. Analytica Chimica Acta, 2019, 1054: 157−166. doi: 10.1016/j.aca.2018.12.027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(4)

    Article Metrics

    Article views (497) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return