• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
ZHAO Y, YANG Y, ZHAO H H, et al. Optimizing Fermentation of Biocontrol Bacterium Bacillus cereus BCCY-22 [J]. Fujian Journal of Agricultural Sciences,2022,37(7):938−945 doi: 10.19303/j.issn.1008-0384.2022.007.015
Citation: ZHAO Y, YANG Y, ZHAO H H, et al. Optimizing Fermentation of Biocontrol Bacterium Bacillus cereus BCCY-22 [J]. Fujian Journal of Agricultural Sciences,2022,37(7):938−945 doi: 10.19303/j.issn.1008-0384.2022.007.015

Optimizing Fermentation of Biocontrol Bacterium Bacillus cereus BCCY-22

doi: 10.19303/j.issn.1008-0384.2022.007.015
  • Received Date: 2022-02-14
  • Rev Recd Date: 2022-04-15
  • Available Online: 2022-06-20
  • Publish Date: 2022-07-28
  •   Objective   Conditions for optimal fermentation of Bacillus cereus BCCY-22, which is known to be capable of effectively controlling a variety of nematode diseases, were determined.   Methods   Using OD600 of the fermentation broth as the indicator, optimal culture conditions for the process were determined with a single factor and response surface experimentation.   Results  High temperature, low initial pH, and restricted oxygen supply significantly governed the bacterial growth. The finalized process was carried out at 21.5 ℃ with an initial pH at 7.3 and inoculation of the seeding broth at 3% to fill 23% in a flask for 36 h.   Conclusion   The optimization shortened the fermentation time by 6 h and increased the biomass by 135.94%. The improvements materially provided the basis for industrialized utilization of B. cereus BCCY-22 as a biocontrol agent.
  • loading
  • [1]
    HUANG C J, WANG T K, CHUNG S C, et al. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9 [J]. BMB Reports, 2005, 38(1): 82−88. doi: 10.5483/BMBRep.2005.38.1.082
    [2]
    LV R, WANG D, ZOU M, et al. Analysis of Bacillus cereus cell viability, sublethal injury, and death induced by mild thermal treatment [J]. Journal of Food Safety, 2019, 39(1): .e12581. doi: 10.1111/jfs.12581
    [3]
    SONI A, OEY I, SILCOCK P, et al. Impact of temperature, nutrients, pH and cold storage on the germination, growth and resistance of Bacillus cereus spores in egg white [J]. Food Research International (Ottawa, Ont ), 2018, 106: 394−403. doi: 10.1016/j.foodres.2018.01.006
    [4]
    BEGYN K, KIM T D, HEYNDRICKX M, et al. Directed evolution by UV-C treatment of Bacillus cereus spores [J]. International Journal of Food Microbiology, 2019, 317: 108424.
    [5]
    WU X Z, LI H L, WANG Y, et al. Effects of bio-organic fertiliser fortified by Bacillus cereus QJ-1 on tobacco bacterial wilt control and soil quality improvement [J]. Biocontrol Science and Technology, 2020, 30(4): 351−369. doi: 10.1080/09583157.2020.1711870
    [6]
    ZHOU J, FENG Z, LIU S, et al. CGTase, a novel antimicrobial protein from Bacillus cereus YUPP‐10, suppresses Verticillium dahliae and mediates plant defence responses [J]. Molecular plant pathology, 2021, 22(1): 130−144. doi: 10.1111/mpp.13014
    [7]
    MARTÍNEZ-ÁLVAREZ J C, CASTRO-MARTÍNEZ C, SÁNCHEZ-PEÑA P, et al. Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants [J]. World Journal of Microbiology and Biotechnology, 2016, 32(5): 1−10.
    [8]
    ZHANG J, LI Y, YUAN H, et al. Biological control of the cereal cyst nematode (Heterodera filipjevi) by Achromobacter xylosoxidans isolate 09X01 and Bacillus cereus isolate 09B18 [J]. Biological Control, 2016, 92: 1−6. doi: 10.1016/j.biocontrol.2015.08.004
    [9]
    VILJOEN J J F, LABUSCHAGNE N, FOURIE H, et al. Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria [J]. Tropical Plant Pathology, 2019, 44(3): 284−291. doi: 10.1007/s40858-019-00283-2
    [10]
    SUBEDI P, GATTONI K, LIU W, et al. Current Utility of Plant Growth-Promoting Rhizobacteria as Biological Control Agents towards Plant-Parasitic Nematodes [J]. Plants, 2020, 9(9): 1167. doi: 10.3390/plants9091167
    [11]
    GAO H, QI G, YIN R, et al. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine [J]. Scientific reports, 2016, 6(1): 1−11. doi: 10.1038/s41598-016-0001-8
    [12]
    ALI A M, AWAD M Y M, HEGAB S A, et al. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato [J]. Journal of Plant Nutrition, 2021, 44(3): 411−420. doi: 10.1080/01904167.2020.1822399
    [13]
    张海艳, 刘芳, 姜旭芳. 蜡样芽孢杆菌的抗逆性研究 [J]. 甘肃畜牧兽医, 2022, 52(3):34−36, 40. doi: 10.3969/j.issn.1006-799X.2022.03.011

    ZHANG H Y, LIU F, JIANG X F. Research on the stress resistance of Bacillus cereus [J]. Gansu Animal Husbandry and Veterinary Medicine, 2022, 52(3): 34−36, 40.(in Chinese) doi: 10.3969/j.issn.1006-799X.2022.03.011
    [14]
    VILAS-BÔAS G T, PERUCA A P S, ARANTES O M N. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis [J]. Canadian journal of microbiology, 2007, 53(6): 673−687. doi: 10.1139/W07-029
    [15]
    杨传旭, 赵迪, 谭卓, 等. 响应面法优化根结线虫生防真菌Snef5的发酵工艺 [J]. 中国生物防治学报, 2016, 32(4):503−510. doi: 10.16409/j.cnki.2095-039x.2016.04.012

    YANG C X, ZHAO D, TAN Z, et al. Ferment Optimization of Biocontrol Fungus Snef5 against Meloidogyne incognita by Response Surface Methodology [J]. Chinese Journal of Biological Control, 2016, 32(4): 503−510.(in Chinese) doi: 10.16409/j.cnki.2095-039x.2016.04.012
    [16]
    ZHANG S, GAN Y, LIU J, et al. Optimization of the Fermentation Media and Parameters for the Bio-control Potential of Trichoderma longibrachiatum T6 Against Nematodes [J]. Frontiers in Microbiology, 2020, 11: 574601. doi: 10.3389/fmicb.2020.574601
    [17]
    咸洪泉, 赵洪海, 李雅华, 等. 蜡样芽孢杆菌, 菌剂及其制备方法和应用: CN109749953A[P]. 2019-05-14.
    [18]
    DING S, CUI Y, XU F, et al. Characteristics of a transferable tet (45) gene conferring resistance to tetracyclines in probiotic Bacillus cereus [J]. Chinese Journal, 2020, 65(32): 3619−3625.
    [19]
    CHEN Y Y, WU H X, SUN P, et al. Remediation of chromium-contaminated soil based on Bacillus cereus WHX-1 immobilized on biochar: Cr(VI) transformation and functional microbial enrichment [J]. Frontiers in Microbiology, 2021, 12: 641913. doi: 10.3389/fmicb.2021.641913
    [20]
    卢国柱. 蜡样芽孢杆菌中有效抗菌物质的分离、纯化及初步鉴定[D]. 烟台: 烟台大学, 2021.

    LU G Z. Isolation, purification and preliminary identification of effective antimicrobial substances from Bacillus cereus[D]. Yantai: Yantai University, 2021. (in Chinese)
    [21]
    RAMÍREZ V, MARTÍNEZ J, BUSTILLOS‐CRISTALES M R, et al. Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum [J]. Journal of Applied Microbiology, 2022, 132(1): 470−482. doi: 10.1111/jam.15179
    [22]
    VILLARREAL-DELGADO M F, VILLA-RODRÍGUEZ E D, CIRA-CHÁVEZ L A, et al. The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity [J]. Revista mexicana de fitopatología, 2018, 36(1): 95−130.
    [23]
    YANG F F, LONG C, WEI Z L, et al. Optimization of medium using response surface methodology to enhance the growth of Effrenium voratum (Symbiodiniaceae, Dinophyceae) [J]. Journal of Phycology, 2020, 56(5): 1208−1215. doi: 10.1111/jpy.13007
    [24]
    陈倩, 张露源, 陈伯昌, 等. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析 [J]. 生物技术通报, 2021, 37(7):127−136.

    CHEN Q, ZHANG L Y, CHEN B C, et al. Optimization of fermentation conditions of Myrothecium verrucaria ZW-2, a biocontrol strain against Heterodera glycines and analysis of active substances [J]. Biotechnology Bulletin, 2021, 37(7): 127−136.(in Chinese)
    [25]
    朱海云, 马瑜, 柯杨, 等. 抗猕猴桃细菌性溃疡病蜡样芽孢杆菌MA23培养基及发酵条件优化 [J]. 中国农学通报, 2021, 37(7):112−118. doi: 10.11924/j.issn.1000-6850.casb2020-0108

    ZHU H Y, MA Y, KE Y, et al. Optimization of culture medium and fermentation parameters of Bacillus cereus MA23 antagonistic to kiwifruit canker [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 112−118.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb2020-0108
    [26]
    CHEN X, LI S, CONG X, et al. Optimization of Bacillus cereus Fermentation Process for Selenium Enrichment as Organic Selenium Source [J]. Frontiers in Nutrition, 2020, 7: 543−873.
    [27]
    尹艳楠, 吴佳雯, 谈家金, 等. 松树内生蜡样芽孢杆菌NJSZ-13菌株发酵培养基及条件优化 [J]. 浙江林业科技, 2020, 40(6):9−17. doi: 10.3969/j.issn.1001-3776.2020.06.002

    YIN Y N, WU J W, TAN J J, et al. Optimization of medium and culture conditions for Bacillus cereus NJSZ-13 [J]. Journal of Zhejiang Forestry Science and Technology, 2020, 40(6): 9−17.(in Chinese) doi: 10.3969/j.issn.1001-3776.2020.06.002
    [28]
    刘树森, 赵建龙, Ahmed Shahid, 等. 禾谷胞囊线虫(Heterodera avenae)在小麦上的侵染和种群动态. [J]. 云南农业大学学报(自然科学), 2017, 32(1):1−10.

    LIU S S, ZHAO J L, AHMED S, et al. Population Dynamics and Infection of Cereal Cyst Nematode (Heterodera avenae) in Wheat in Beijing. [J]. Journal of Yunnan Agricultural University, 2017, 32(1): 1−10.(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (445) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return