• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
SUN S Y, WANG X L, CAO Z L, et al. Transcriptome Sequencing and Identification of Genes Associated with Flavonoid Biosynthesis in Stellaria yunnanensis Roots [J]. Fujian Journal of Agricultural Sciences,2022,37(8):1008−1015 doi: 10.19303/j.issn.1008-0384.2022.008.006
Citation: SUN S Y, WANG X L, CAO Z L, et al. Transcriptome Sequencing and Identification of Genes Associated with Flavonoid Biosynthesis in Stellaria yunnanensis Roots [J]. Fujian Journal of Agricultural Sciences,2022,37(8):1008−1015 doi: 10.19303/j.issn.1008-0384.2022.008.006

Transcriptome Sequencing and Identification of Genes Associated with Flavonoid Biosynthesis in Stellaria yunnanensis Roots

doi: 10.19303/j.issn.1008-0384.2022.008.006
  • Received Date: 2022-04-11
  • Accepted Date: 2022-04-11
  • Rev Recd Date: 2022-07-28
  • Available Online: 2022-08-08
  • Publish Date: 2022-08-28
  •   Objective  Transcriptome of Stellaria yunnanensis root was sequenced and genes associated with the flavonoid biosynthesis identified.   Method  Transcriptome of S. yunnanensis root was sequenced using the high-throughput Illumina Novaseq 6 000. Functional annotation of the unigenes were conducted and genes related to the biosynthesis identified.   Result   There were 34 137 unigenes found with an average length of 1 093.58 bp. They annotated to 6 functional databases, including NR, egg NOG, Pfam, Swiss-Prot, GO, and KEGG, that numbered 22 369 in total. There were 21 510 unigenes annotated in NR database, which had high homology with Beta vulgaris, Chenopodium quinoa, and Spinacia oleracea of Chenopodiaceae, while 19 980 from 19 414 unigenes in egg NOG in 23 categories, and 69 356 from 19 942 unigenes in GO in 3 major functional categories of cellular components, molecular functions, and, especially, biological processes with 14, 16, and 23 subcategories, respectively. Of the unigenes, 6 505 were enriched in 131 pathways in KEGG with the largest proportion related to the metabolism pathways, 80 associated with the flavonoid biosynthesis encoding 16 key enzymes, and 724 annotated as transcription factors.   Conclusion  The high-throughput transcriptome sequencing and gene function annotation on the S. yunnanensis roots were successfully performed. Several unigenes related to the flavonoid synthesis were identified. The information would facilitate further studies on the key genes and mechanisms in the formation of medicinal important functional ingredient in the plant.
  • loading
  • [1]
    中国植物志编委会. 中国植物志(第26卷) [M]. 北京: 科学出版社, 1996: 133.
    [2]
    马利华, 陈斌, 谢东浩, 等. 繁缕属植物抗病毒活性物质基础组分结构研究 [J]. 中草药, 2012, 43(4):799−805.

    MA L H, CHEN B, XIE D H, et al. Study on antiviral material basis and component structure in plants of Stellaria L [J]. Chinese Traditional and Herbal Drugs, 2012, 43(4): 799−805.(in Chinese)
    [3]
    谭瑞璞, 刘海周, 邓义德, 等. 千针万线草中总黄酮提取工艺的研究 [J]. 云南中医学院学报, 2009, 32(1):9−11. doi: 10.3969/j.issn.1000-2723.2009.01.003

    TAN R P, LIU H Z, DENG Y D, et al. Study on extraction process of total flavonoids in Stellaria yunnanensis franch [J]. Journal of Yunnan University of Traditional Chinese Medicine, 2009, 32(1): 9−11.(in Chinese) doi: 10.3969/j.issn.1000-2723.2009.01.003
    [4]
    谭瑞璞, 刘海周, 梁晓原. HPLC法测定千针万线草中牡荆素的含量 [J]. 云南中医学院学报, 2009, 32(4):28−29,32. doi: 10.3969/j.issn.1000-2723.2009.04.009

    TAN R P, LIU H Z, LIANG X Y. Determination of vitexin in Stellaria yunnanensis by HPLC [J]. Journal of Yunnan University of Traditional Chinese Medicine, 2009, 32(4): 28−29,32.(in Chinese) doi: 10.3969/j.issn.1000-2723.2009.04.009
    [5]
    刘伟, 王俊燚, 李萌, 等. 基于转录组测序的银杏类黄酮生物合成关键基因表达分析 [J]. 中草药, 2018, 49(23):5633−5639. doi: 10.7501/j.issn.0253-2670.2018.23.024

    LIU W, WANG J Y, LI M, et al. Transcriptome sequencing analysis of gene expression of flavonoid biosynthesis in Ginkgo biloba [J]. Chinese Traditional and Herbal Drugs, 2018, 49(23): 5633−5639.(in Chinese) doi: 10.7501/j.issn.0253-2670.2018.23.024
    [6]
    邹丽秋, 王彩霞, 匡雪君, 等. 黄酮类化合物合成途径及合成生物学研究进展 [J]. 中国中药杂志, 2016, 41(22):4124−4128.

    ZOU L Q, WANG C X, KUANG X J, et al. Advance in flavonoids biosynthetic pathway and synthetic biology [J]. China Journal of Chinese Materia Medica, 2016, 41(22): 4124−4128.(in Chinese)
    [7]
    LI H Y, DONG Y Y, YANG J, et al. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids [J]. PLoS One, 2012, 7(2): e30987. doi: 10.1371/journal.pone.0030987
    [8]
    邓楠, 史胜青, 常二梅, 等. 基于中麻黄萌发种子转录组的黄酮类化合物合成途径基因的挖掘 [J]. 林业科学研究, 2014, 27(6):758−763.

    DENG N, SHI S Q, CHANG E M, et al. Exploring flavonoid biosynthetic pathway genes based on transcriptome of Ephedra intermedia germinating seeds [J]. Forest Research, 2014, 27(6): 758−763.(in Chinese)
    [9]
    邹毅辉, 刘昌勇, 林泽燕, 等. 半枝莲转录组高通量测序及黄酮类相关基因解析 [J]. 福建农业学报, 2018, 33(12):1242−1250.

    ZOU Y H, LIU C Y, LIN Z Y, et al. Transcriptome sequencing and flavonoid biosynthesis-related genes of Scutellaria barbata D. Don [J]. Fujian Journal of Agricultural Sciences, 2018, 33(12): 1242−1250.(in Chinese)
    [10]
    邹福贤, 许文, 黄泽豪, 等. 金线莲转录组测序及其黄酮类合成相关基因分析 [J]. 中国药科大学学报, 2019, 50(1):66−74. doi: 10.11665/j.issn.1000-5048.20190109

    ZOU F X, XU W, HUANG Z H, et al. Analysis of transcriptome sequencing and related genes of flavonoid biosynthesis from Anoectochilus roxburghii [J]. Journal of China Pharmaceutical University, 2019, 50(1): 66−74.(in Chinese) doi: 10.11665/j.issn.1000-5048.20190109
    [11]
    林江波, 王伟英, 邹晖, 等. 基于转录组测序的铁皮石斛黄酮代谢途径及相关基因解析 [J]. 福建农业学报, 2019, 34(9):1019−1025.

    LIN J B, WANG W Y, ZOU H, et al. Transcriptome analysis on pathway of and genes related to flavonoid synthesis in Dendrobium officinale [J]. Fujian Journal of Agricultural Sciences, 2019, 34(9): 1019−1025.(in Chinese)
    [12]
    许明, 杨志坚, 黄学敏, 等. 藤茶高通量转录组分析及黄酮类化合物合成相关基因挖掘 [J]. 南方农业学报, 2020, 51(8):1797−1805.

    XU M, YANG Z J, HUANG X M, et al. Transcriptome analysis of Ampelopsis grossedentata(Hand. Mazz. )W. T. Wang and mining of putative genes involved in flavonoid biosynthesis [J]. Journal of Southern Agriculture, 2020, 51(8): 1797−1805.(in Chinese)
    [13]
    袁茂, 江明锋, 徐亚欧, 等. 藏鸡不同发育阶段腿部肌肉组织转录组及microRNA联合分析 [J]. 畜牧兽医学报, 2019, 50(12):2400−2412. doi: 10.11843/j.issn.0366-6964.2019.12.004

    YUAN M, JIANG M F, XU Y O, et al. Analysis of transcriptome and microRNA in leg muscle of Tibetan chicken at different developmental stages [J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(12): 2400−2412.(in Chinese) doi: 10.11843/j.issn.0366-6964.2019.12.004
    [14]
    GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nature Biotechnology, 2011, 29(7): 644−652. doi: 10.1038/nbt.1883
    [15]
    SMITH-UNNA R, BOURSNELL C, PATRO R, et al. TransRate: Reference-free quality assessment of de novo transcriptome assemblies [J]. Genome Research, 2016, 26(8): 1134−1144. doi: 10.1101/gr.196469.115
    [16]
    LI W Z, GODZIK A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences [J]. Bioinformatics, 2006, 22(13): 1658−1659. doi: 10.1093/bioinformatics/btl158
    [17]
    SIMÃO F A, WATERHOUSE R M, IOANNIDIS P, et al. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs [J]. Bioinformatics, 2015, 31(19): 3210−3212. doi: 10.1093/bioinformatics/btv351
    [18]
    CONESA A, GÖTZ S, GARCÍA-GÓMEZ J M, et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research [J]. Bioinformatics, 2005, 21(18): 3674−3676. doi: 10.1093/bioinformatics/bti610
    [19]
    朱畇昊, 董诚明, 郑晓珂, 等. 基于转录组测序的山茱萸次生代谢生物合成相关基因的挖掘 [J]. 中国中药杂志, 2017, 42(2):213−219.

    ZHU Y H, DONG C M, ZHENG X K, et al. Transcriptome analysis reveals genes involved in biosynthesis of secondary metabolism in Cornus officinalis [J]. China Journal of Chinese Materia Medica, 2017, 42(2): 213−219.(in Chinese)
    [20]
    吴萍, 郭俊霞, 王晓宇, 等. 基于高通量测序技术的杭白芷(Angelica dahurica)根转录组数据分析 [J]. 分子植物育种, 2020, 18(10):3207−3216.

    WU P, GUO J X, WANG X Y, et al. High-throughput transcriptome sequencing of roots of Angelica dahurica and data analyses [J]. Molecular Plant Breeding, 2020, 18(10): 3207−3216.(in Chinese)
    [21]
    王建秋, 王晓丽, 曹子林. 滇白前种子转录组测序及功能注释 [J]. 种子, 2021, 40(3):52−59.

    WANG J Q, WANG X L, CAO Z L. Transcriptome sequencing and functional annotation of Silene viscidula seeds [J]. Seed, 2021, 40(3): 52−59.(in Chinese)
    [22]
    WANG H Y, WANG H L, SHAO H B, et al. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology [J]. Frontiers in Plant Science, 2016, 7: 67.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (371) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return