• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
GAO S L, ZHU Y R, HE P, et al. Soil Microbial Community Affected by Treatments on Soybean Plants Grown at Tea Plantations [J]. Fujian Journal of Agricultural Sciences,2022,37(10):1354−1361 doi: 10.19303/j.issn.1008-0384.2022.010.015
Citation: GAO S L, ZHU Y R, HE P, et al. Soil Microbial Community Affected by Treatments on Soybean Plants Grown at Tea Plantations [J]. Fujian Journal of Agricultural Sciences,2022,37(10):1354−1361 doi: 10.19303/j.issn.1008-0384.2022.010.015

Soil Microbial Community Affected by Treatments on Soybean Plants Grown at Tea Plantations

doi: 10.19303/j.issn.1008-0384.2022.010.015
  • Received Date: 2022-06-14
  • Rev Recd Date: 2022-06-29
  • Available Online: 2022-11-29
  • Publish Date: 2022-10-30
  •   Objective  Effects of different treatments of soybean plants on the microbial community in tea plantation soil were studied.   Method  MiSeq high-throughput sequencing method was employed to analyze the differentiations on the microbial structure and diversity in rhizosphere soils at tea plantations with or without soybeans plants grown on the land and the use of cut plant parts. The treatments applied for the study were USB (removing aboveground parts of planted soybean plants), ASB (ground-mulching with cut plant parts from USB treatment), and WSB (covering soybean growing ground with cut aboveground plant parts).   Result  The rhizosphere soil of the treatment fields had significantly higher OTU, ACE index, and Chao1 index than that of no-treatment CK (P<0.05). ASB or WSB significantly increased the fungal OTU, while all 3 treatments significantly raised the fungal ACE index. The Bray clustering and ternary phase plots on the 3 treatments showed a similarity on soil bacterial and fungal structures that had Sphingomonas being the dominant bacteria at 7.53% and positively correlated with Bryobacter. The relative abundance of the fungal communities, on the other hand, significantly differed from that of CK as the dominant species Arnium at 7.21% found only in the treatment soils which was negatively correlated with Penicillium. In addition, the abundance of Condenascus increased significantly.   Conclusion  The various treatments on the soybean plants at the tea plantations altered the soil microbial community. They increased the diversity and abundance of microbes, especially, WSB significantly enriched the microbial population in in the rhizosphere soil.
  • loading
  • [1]
    SILVA L S, SEABRA A R, LEITÃO J N, et al. Possible role of glutamine synthetase of the prokaryotic type (GSI-like) in nitrogen signaling in Medicago truncatula [J]. Plant Science, 2015, 240: 98−108. doi: 10.1016/j.plantsci.2015.09.001
    [2]
    GUI H, FAN L C, WANG D H, et al. Organic management practices shape the structure and associations of soil bacterial communities in tea plantations [J]. Applied Soil Ecology, 2021, 163: 103975. doi: 10.1016/j.apsoil.2021.103975
    [3]
    ZHANG J C, ZHANG Z M, HUANG X F. Spatial heterogeneity of pH and heavy metal Cd in the soils of tea gardens in the plateau mountain regions, PR China [J]. Environmental Monitoring and Assessment, 2021, 193: 646. doi: 10.1007/s10661-021-09431-1
    [4]
    YU J L, LIN S, SHAABAN M, et al. Nitrous oxide emissions from tea garden soil following the addition of urea and rapeseed cake [J]. Journal of Soils and Sediments, 2020, 20: 3330−3339. doi: 10.1007/s11368-020-02641-z
    [5]
    LI Y C, LI Z W, ARAFAT Y, et al. Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization [J]. European Journal of Soil Biology, 2017, 81: 48−54. doi: 10.1016/j.ejsobi.2017.06.008
    [6]
    BHATTACHARYYA P N, SARMAH S R. The role of microbes in tea cultivation[M]. India: Burleigh Dodds Science Publishing, 2018, 41: 135-167.
    [7]
    DUAN Y, SHEN J Z, ZHANG X L, et al. E­ffects of soybean–tea intercropping on soil-available nutrients and tea quality [J]. Acta Physiologiae Plantarum, 2019, 41(8): 140. doi: 10.1007/s11738-019-2932-8
    [8]
    黎健龙, 涂攀峰, 陈娜, 等. 茶树与大豆间作效应分析 [J]. 中国农业科学, 2008, 41(7):2040−2047. doi: 10.3864/j.issn.0578-1752.2008.07.022

    LI J L, TU P F, CHEN N, et al. Effects of tea intercropping with soybean [J]. Scientia Agricultura Sinica, 2008, 41(7): 2040−2047.(in Chinese) doi: 10.3864/j.issn.0578-1752.2008.07.022
    [9]
    LIU L T, KNIGHT J D, LEMKE R L, et al. A side-by-side comparison of biological nitrogen fixation and yield of four legume crops [J]. Plant Soil, 2019, 442(1-2): 169−182. doi: 10.1007/s11104-019-04167-x
    [10]
    PROCHÁZKA P, ŠTRANC P, VOSTŘEL J, et al. The influence of effective soybean seed treatment on root biomass formation and seed production [J]. Plant, Soil and Environment, 2019, 65(12): 588−593. doi: 10.17221/545/2019-PSE
    [11]
    韦持章, 农玉琴, 陈远权, 等. 茶树/大豆间作对根际土壤微生物群落及酶活性的影响 [J]. 西北农业学报, 2018, 27(4):537−544. doi: 10.7606/j.issn.1004-1389.2018.04.011

    WEI C Z, NONG Y Q, CHEN Y Q, et al. Effects of tea and soybean intercropping on soil microbial community and enzyme activity [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(4): 537−544.(in Chinese) doi: 10.7606/j.issn.1004-1389.2018.04.011
    [12]
    GAO S L, HE P, LIN T X, et al. Consecutive soybean (Glycine max) planting and covering improve acidified tea garden soil [J]. PLoS ONE, 2021, 16(7): e0254502. doi: 10.1371/journal.pone.0254502
    [13]
    鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2000.
    [14]
    TEDERSOO L, BAHRAM M, PÕLME S, et al. Global diversity and geography of soil fungi [J]. Science, 2014, 346(6213): 1078.
    [15]
    BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome [J]. Nature, 2018, 560(7717): 233−237. doi: 10.1038/s41586-018-0386-6
    [16]
    田春杰, 陈家宽, 钟扬. 微生物系统发育多样性及其保护生物学意义 [J]. 应用生态学报, 2003, 14(4):609−612. doi: 10.3321/j.issn:1001-9332.2003.04.030

    TIAN C J, CHEN J K, ZHONG Y. Phylogenetic diversity of microbes and its perspectives in conservation biology [J]. Chinese Journal of Applied Ecology, 2003, 14(4): 609−612.(in Chinese) doi: 10.3321/j.issn:1001-9332.2003.04.030
    [17]
    韦锦坚, 覃潇敏, 农玉琴, 等. 茶与大豆间作对土壤微生物群落代谢功能多样性的影响 [J]. 华北农学报, 2021, 36(S1):289−296. doi: 10.7668/hbnxb.20191878

    WEI J J, QIN X M, NONG Y Q, et al. Effects of tea and soybean intercropping on metabolic functional diversity of soil microbial community [J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1): 289−296.(in Chinese) doi: 10.7668/hbnxb.20191878
    [18]
    李鑫, 张会慧, 岳冰冰, 等. 桑树-大豆间作对盐碱土碳代谢微生物多样性的影响 [J]. 应用生态学报, 2012, 23(7):1825−1831. doi: 10.13287/j.1001-9332.2012.0209

    LI X, ZHANG H H, YUE B B, et al. Effects of mulberry-soybean intercropping on carbon-metabolic microbial diversity in saline-alkaline soil [J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1825−1831.(in Chinese) doi: 10.13287/j.1001-9332.2012.0209
    [19]
    魏兰芳, 张荣琴, 姚博, 等. 大豆轮作及秸秆还田模式对白菜根肿病的影响 [J]. 江西农业大学学报, 2021, 43(1):52−62. doi: 10.13836/j.jjau.2021007

    WEI L F, ZHANG R Q, YAO B, et al. Effect of rotating soybean and its straw returning on Chinese cabbage clubroot disease [J]. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(1): 52−62.(in Chinese) doi: 10.13836/j.jjau.2021007
    [20]
    马玲, 马琨, 汤梦洁, 等. 间作与接种AMF对连作土壤微生物群落结构与功能的影响 [J]. 生态环境学报, 2013, 22(8):1341−1347. doi: 10.3969/j.issn.1674-5906.2013.08.011

    MA L, MA K, TANG M J, et al. Effects of intecropping and inoculation of AMF on the microbial community structure and function of continuous cropping soil [J]. Ecology and Environmental Sciences, 2013, 22(8): 1341−1347.(in Chinese) doi: 10.3969/j.issn.1674-5906.2013.08.011
    [21]
    马立锋, 陈红金, 单英杰, 等. 浙江省绿茶主产区茶园施肥现状及建议 [J]. 茶叶科学, 2013, 33(1):74−84. doi: 10.13305/j.cnki.jts.2013.01.010

    MA L F, CHEN H J, SHAN Y J, et al. Status and suggestions of tea garden fertilization on main green tea-producing counties in Zhengjiang Province [J]. Journal of Tea Science, 2013, 33(1): 74−84.(in Chinese) doi: 10.13305/j.cnki.jts.2013.01.010
    [22]
    WEN B, ZHANG X L, REN S, et al. Characteristics of soil nutrients, heavy metals and tea quality in different intercropping patterns [J]. Agroforestry systems, 2020, 94(3): 963−974. doi: 10.1007/s10457-019-00463-8
    [23]
    吕宁, 石磊, 刘海燕, 等. 生物药剂滴施对棉花黄萎病及根际土壤微生物数量和多样性的影响 [J]. 应用生态学报, 2019, 30(2):602−614. doi: 10.13287/j.1001-9332.201902.032

    LYU N, SHI L, LIU H Y, et al. Effects of biological agent dripping on cotton Verticillium wilt and rhizosphere soil microorganism [J]. Chinese Journal of Applied Ecology, 2019, 30(2): 602−614.(in Chinese) doi: 10.13287/j.1001-9332.201902.032
    [24]
    郝海平, 白红彤, 夏菲, 等. 茶-山苍子间作对茶园土壤微生物群落结构的影响 [J]. 中国农业科学, 2021, 54(18):3959−3969. doi: 10.3864/j.issn.0578-1752.2021.18.014

    HAO H P, BAI H T, XIA F, et al. Effects of tea-Litsea cubeba intrercropping on soil microbial community structure in tea plantation [J]. Scientia Agricultura Sinica, 2021, 54(18): 3959−3969.(in Chinese) doi: 10.3864/j.issn.0578-1752.2021.18.014
    [25]
    张玥, 胡雲飞, 王树茂, 等. 茶园年限对根际土壤真菌群落结构及多样性的影响 [J]. 应用与环境生物学报, 2018, 24(5):972−977. doi: 10.19675/j.cnki.1006-687x.2018.04011

    ZHANG Y, HU Y F, WANG S M, et al. The structure and diversity of the fungal community in rhizosphere soil from tea gardens of different ages [J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(5): 972−977.(in Chinese) doi: 10.19675/j.cnki.1006-687x.2018.04011
    [26]
    CHEN B, SHEN J G, ZHANG X C, et al. The endophytic bacterium, Sphingomonas SaMR12, improves the potential for Zinc phytoremediation by its host, Sedum alfredii [J]. PLoS ONE, 2014, 9(9): e106826. doi: 10.1371/journal.pone.0106826
    [27]
    MYRESIOTIS C K, VRYZAS Z, PAPADOPOULOU-MOURKIDOU E. Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth [J]. Biodegradation, 2012, 23(2): 297−310. doi: 10.1007/s10532-011-9509-6
    [28]
    SHANTHIYAA V, SARAVANAKUMAR D, RAJENDRAN L, et al. Use of Chaetomium globosum for biocontrol of potato late blight disease [J]. Crop Protection, 2013, 52: 33−38. doi: 10.1016/j.cropro.2013.05.006
    [29]
    ZHANG Q, GUO T F, LI H, et al. Identification of fungal populations assimilating rice root residue-derived carbon by DNA stable-isotope probing [J]. Applied Soil Ecology, 2020, 147: 103374. doi: 10.1016/j.apsoil.2019.103374
    [30]
    DAYNES C M, MCGEE P A, MIDGLEY D J. Utilisation of plant cell-wall polysaccharides and organic phosphorus substrates by isolates of Aspergillus and Penicillium isolated from soil [J]. Fungal Ecology, 2008, 1(2-3): 94−98. doi: 10.1016/j.funeco.2008.09.001
    [31]
    ZHU X J, HU Y F, CHEN X, et al. Endophytic fungi from camellia sinensis show an antimicrobial activity against the rice blast pathogen Magnaporthe grisea [J]. Phyton-International Journal of Experimental Botany, 2014, 83: 57−63.
    [32]
    葛德永, 姚槐应, 黄昌勇. 茶园土壤耐酸铝微生物的分离鉴定及其耐铝特性研究 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(6):626−632.

    GE D Y, YAO H Y, HUANG C Y. Isolation and characterization of acid- and Al-tolerant microorganisms [J]. Journal of Zhejiang University (Agric. & Life Sci.), 2007, 33(6): 626−632.(in Chinese)
    [33]
    CHEN L J, JIANG Y J, LIANG C, et al. Competitive interaction with keystone taxa induced negative priming under biochar amendments [J]. Microbiome, 2019, 7: 77. doi: 10.1186/s40168-019-0693-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (383) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return