• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
PAN Z Z, FU J R, ZHENG W, et al. Inhibitory Activity of Isoflavones from Ormosia hosiei Seeds against Botrytis cinerea [J]. Fujian Journal of Agricultural Sciences,2022,37(6):794−801 doi: 10.19303/j.issn.1008-0384.2022.06.015
Citation: PAN Z Z, FU J R, ZHENG W, et al. Inhibitory Activity of Isoflavones from Ormosia hosiei Seeds against Botrytis cinerea [J]. Fujian Journal of Agricultural Sciences,2022,37(6):794−801 doi: 10.19303/j.issn.1008-0384.2022.06.015

Inhibitory Activity of Isoflavones from Ormosia hosiei Seeds against Botrytis cinerea

doi: 10.19303/j.issn.1008-0384.2022.06.015
  • Received Date: 2022-04-12
  • Rev Recd Date: 2022-05-21
  • Available Online: 2022-06-20
  • Publish Date: 2022-06-28
  •   Objective  Antifungal activity of the isoflavones of Ormosia hosiei on Botrytis cinerea Pers was investigated for the development of a natural disease control agent on tomato plants.   Methods  Inhibitory effect of the isoflavones extract from seeds of O. hosiei on the pathogen, B. cinerea, that infects tomato plants was tested according to the in vitro fungal growth rate. Functions of the isoflavone monomer biochanin A on the changes of mycelial dry weight, cell membrane, reducing sugar content, and activities of catalase, peroxidase, superoxide dismutase, and other protective enzymes of B. cinerea were analyzed. Physiological, biochemical, and bacteriostatic effects of the monomer on tomatoes were observed in vitro.   Results  Biochanin A of O. hosiei significantly inhibited the growth of B. cinerea with an EC50 of 203.189 μg·mL−1. Its presence lowered the dry mycelia weight, cell membrane permeability, and reducing sugar content but rose the protective enzyme activities in hyphae of B. cinerea.   Conclusions  The ethyl acetate extract from the seeds of O. hosiei was rich in alkaloids and flavonoids. Of which, isoflavones was believed to be the key active antibacterial components that inhibited the fungal growth by interfering the growth, impairing the cell membrane functions, and reducing the protective enzyme activities of the hyphae.
  • loading
  • [1]
    赵娟, 刘霆, 刘伟成, 等. 番茄灰霉病生防链霉菌筛选及鉴定 [J]. 微生物学通报, 2019, 46(10):2548−2558.

    ZHAO J, LIU T, LIU W C, et al. Screening and identification of the biocontrol Streptomyces against tomato Botrytis cinerea [J]. Microbiology China, 2019, 46(10): 2548−2558.(in Chinese)
    [2]
    魏佳爽, 袁善奎, 向冰峰, 等. 番茄灰霉病菌(Botrytis cinerea)对3种杀菌剂的抗性监测及交互抗药性研究 [J]. 现代农药, 2021, 20(1):46−49. doi: 10.3969/j.issn.1671-5284.2021.01.010

    WEI J S, YUAN S K, XIANG B F, et al. Resistance monitoring and cross-resistance study of Botrytis cinerea to three fungicides [J]. Modern Agrochemicals, 2021, 20(1): 46−49.(in Chinese) doi: 10.3969/j.issn.1671-5284.2021.01.010
    [3]
    陈丽萍, 张怡, 徐笔奇, 等. 6种杀菌剂对番茄灰霉病菌的室内毒力测定 [J]. 浙江农业科学, 2019, 60(12):2270−2272.

    CHEN L P, ZHANG Y, XU B Q, et al. Toxicity determination of 6 fungicides to Botrytis cinerea on tomato [J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(12): 2270−2272.(in Chinese)
    [4]
    李朋钰, 李映, 杨涛, 等. 小檗碱与多种成分复配及其对番茄灰霉病的抑制作用 [J]. 湖北农业科学, 2019, 58(1):56−60,110.

    LI P Y, LI Y, YANG T, et al. Inhibition of berberine with other components on Botrytis cinerea [J]. Hubei Agricultural Sciences, 2019, 58(1): 56−60,110.(in Chinese)
    [5]
    楚秀丽, 付艳茹, 严巍. 珍稀植物红豆树资源保育及精细化培育研究进展 [J]. 中国野生植物资源, 2021, 40(10):61−65. doi: 10.3969/j.issn.1006-9690.2021.10.010

    CHU X L, FU Y R, YAN W. Genetic conservation for rear plant of Ormosia hosiei and research progress in its fine silviculture [J]. Chinese Wild Plant Resources, 2021, 40(10): 61−65.(in Chinese) doi: 10.3969/j.issn.1006-9690.2021.10.010
    [6]
    张琳婧, 周文娟, 倪林, 等. 红豆属植物化学成分及其药理活性研究进展 [J]. 中草药, 2021, 52(14):4433−4442. doi: 10.7501/j.issn.0253-2670.2021.14.035

    ZHANG L J, ZHOU W J, NI L, et al. A review on chemical constituents and pharmacological activities of Ormosia Full text replacement [J]. Chinese Traditional and Herbal Drugs, 2021, 52(14): 4433−4442.(in Chinese) doi: 10.7501/j.issn.0253-2670.2021.14.035
    [7]
    张琳婧, 全颖萱, 李林海, 等. 红豆树枝条化学成分及抗炎活性研究 [J]. 天然产物研究与开发, 2021, 33(4):585−591.

    ZHANG L J, QUAN Y X, LI L H, et al. Chemical constituents and their anti-inflammatory activity from twigs of Ormosia hosiei Hemsl. & E. H. Wilson [J]. Natural Product Research and Development, 2021, 33(4): 585−591.(in Chinese)
    [8]
    邱亚铁, 石妍, 徐会有, 等. 红豆树茎枝中黄酮类成分及其抑菌活性研究 [J]. 天然产物研究与开发, 2018, 30(12):2056−2062.

    QIU Y T, SHI Y, XU H Y, et al. Flavonoids from the twigs of Ormosia hosiei and their anti-fungal activities [J]. Natural Product Research and Development, 2018, 30(12): 2056−2062.(in Chinese)
    [9]
    ZHANG L J, ZHENG L J, WANG Q, et al. Cytisine-like alkaloids from the seeds of Ormosia hosiei Hemsl. et Wils. [J]. Natural product research, 2021: 1−7. Doi: 10.1080/14786419.2021.2005591.
    [10]
    FAN L L, LUO Z F, LI Y, et al. Synthesis and antifungal activity of imidazo[1, 2- b]pyridazine derivatives against phytopathogenic fungi [J]. Bioorganic & Medicinal Chemistry Letters, 2020, 30(14): 127139.
    [11]
    DEVI R, LUSIANA, AGUS M, et al. Study on the potency of methanol extracts from xanthosoma nigrum stellfeld as natural anti oxidant by thiobarbituric acid method [J]. Aceh International Journal of Science and Technology, 2013, 2(3): 82−87.
    [12]
    赵凯, 许鹏举, 谷广烨. 3, 5-二硝基水杨酸比色法测定还原糖含量的研究 [J]. 食品科学, 2008, 29(8):534−536. doi: 10.3321/j.issn:1002-6630.2008.08.127

    ZHAO K, XU P J, GU G Y, et al. Study on determination of reducing sugar content using 3, 5-dinitrosalicylic acid method [J]. Food Science, 2008, 29(8): 534−536.(in Chinese) doi: 10.3321/j.issn:1002-6630.2008.08.127
    [13]
    杜斌, 谭方根, 史学林, 等. 紫外分光光度法测定合欢皮中的总黄酮 [J]. 华西药学杂志, 2019, 34(2):176−178. doi: 10.13375/j.cnki.wcjps.2019.02.015

    DU B, TAN F G, SHI X L, et al. Determination of the total flavonoids in Albizia julibrissin by UV spectrophotometry [J]. West China Journal of Pharmaceutical Sciences, 2019, 34(2): 176−178.(in Chinese) doi: 10.13375/j.cnki.wcjps.2019.02.015
    [14]
    沈文飚, 徐朗莱, 叶茂炳, 等. 氮蓝四唑光化还原法测定超氧化物歧化酶活性的适宜条件 [J]. 南京农业大学学报, 1996, 19(2):101−102.

    SHEN W B, XU L L, YE M B, et al. The suitable conditions for determining sod activity by nitro blue tetrazolium(nbt) photoreduction method [J]. Journal of Nanjing Agricultural University, 1996, 19(2): 101−102.(in Chinese)
    [15]
    靳蕊, 徐敏纹, 刘莹, 等. 黄酮类化合物的抑菌作用及其机制的研究 [J]. 继续医学教育, 2016, 30(8):152−154. doi: 10.3969/j.issn.1004-6763.2016.08.087

    JIN R, XU M W, LIU Y, et al. Study on antibacterial activity and mechanism of flavonoids [J]. Continuing Medical Education, 2016, 30(8): 152−154.(in Chinese) doi: 10.3969/j.issn.1004-6763.2016.08.087
    [16]
    赵雪巍, 刘培玉, 刘丹, 等. 黄酮类化合物的构效关系研究进展 [J]. 中草药, 2015, 46(21):3264−3271. doi: 10.7501/j.issn.0253-2670.2015.21.025

    ZHAO X W, LIU P Y, LIU D, et al. Research progress in structure-activity relationship of flavoniods [J]. Chinese Traditional and Herbal Drugs, 2015, 46(21): 3264−3271.(in Chinese) doi: 10.7501/j.issn.0253-2670.2015.21.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (476) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return