• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
CHEN H M, QIAN X J, ZHAO L, et al. Effects of Quicklime Application on Chemical Properties and Microbial Community of Highly Acidic Pomelo Orchard Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(1):99−108 doi: 10.19303/j.issn.1008-0384.2023.01.013
Citation: CHEN H M, QIAN X J, ZHAO L, et al. Effects of Quicklime Application on Chemical Properties and Microbial Community of Highly Acidic Pomelo Orchard Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(1):99−108 doi: 10.19303/j.issn.1008-0384.2023.01.013

Effects of Quicklime Application on Chemical Properties and Microbial Community of Highly Acidic Pomelo Orchard Soil

doi: 10.19303/j.issn.1008-0384.2023.01.013
  • Received Date: 2022-07-04
  • Accepted Date: 2022-07-04
  • Rev Recd Date: 2022-10-21
  • Available Online: 2023-03-06
  • Publish Date: 2023-01-28
  •   Objective  Effects of quicklime application on the chemical properties and microbial community of highly acidic pomelo orchard soil were analyzed to improve land management.   Method   In a pot experiment, quicklime were added to the highly acidic pomelo orchard soil in a dosage of 0 g·kg−1 (T1 as control), 1.2 g·kg−1 (T2), or 2.4 g·kg−1 (T3). After 90 d, chemical analysis and high-throughput sequencing were conducted to determine the acidity and carbon and nitrogen contents as well as the microbial diversity and structure in the soil. The collected data were used to statistically analyze correlation among them.   Result  The quicklime applications raised the pomelo orchard soil pH by 0.91–1.70, decreased the content of exchangeable aluminum by 60.00%–99.17% and that of ammonium nitrogen by 27.74%–33.84%, while increased the contents of total carbon by 10.27%–39.29%, nitrogen by 12.84%–34.86%, and nitrate nitrogen by 3.45%–42.70% over control. With increasing quicklime dosage, the soil bacteria Chao1, ACE, and Shannon indices significantly increased in the ranges of 47.68%–74.15%, 46.40%–73.70%, and 9.53%–14.95%, respectively. The dominant bacteria phyla in the soils under all 3 treatments were Actinobacteriota and Proteobacteria with a relative abundance greater than 20%. Acidothermus was the dominant genus with higher relative abundance at lower pHs. Overall, the relative abundance of Chloroflexi, Bacteroidota, Firmicutes, Gemmatimonas, and Micromonospora increased with the amount of quicklime applied. The redundancy analysis (RDA) indicated that soil chemistry explained 69.32% of the changes in the microbial community and that pH was the most important affecting factor.   Conclusion  Addition of quicklime to a highly acidic pomelo orchard soil raised the pH and the contents of carbon, nitrogen, and nitrate nitrogen, reduced the exchangeable aluminum, and improved the diversity and richness of microbial community in the soil. It is recommended that the amount of quicklime in the highly acidic soil of the pomelo orchard is 2.4 g·kg−1.
  • loading
  • [1]
    鲁艳红, 廖育林, 聂军, 等. 我国南方红壤酸化问题及改良修复技术研究进展 [J]. 湖南农业科学, 2015(3):148−151.

    LU Y H, LIAO Y L, NIE J, et al. Status of red soil acidification and its amelioration technologies in South China [J]. Hunan Agricultural Sciences, 2015(3): 148−151.(in Chinese)
    [2]
    沈仁芳, 赵学强. 酸性土壤可持续利用 [J]. 农学学报, 2019, 9(3):16−20.

    SHEN R F, ZHAO X Q. The sustainable use of acid soils [J]. Journal of Agriculture, 2019, 9(3): 16−20.(in Chinese)
    [3]
    徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施 [J]. 中国科学院院刊, 2018, 33(2):160−167.

    XU R K, LI J Y, ZHOU S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 160−167.(in Chinese)
    [4]
    李歆博, 林伟杰, 李湘君, 等. 琯溪蜜柚园土壤酸化特征研究 [J]. 经济林研究, 2020, 38(1):169−176.

    LI X B, LIN W J, LI X J, et al. Research on soil acidification characteristics of Guanxi pomelo orchards [J]. Non-Wood Forest Research, 2020, 38(1): 169−176.(in Chinese)
    [5]
    吴道铭, 傅友强, 于智卫, 等. 我国南方红壤酸化和铝毒现状及防治 [J]. 土壤, 2013, 45(4):577−584.

    WU D M, FU Y Q, YU Z W, et al. Status of red soil acidification and aluminum toxicity in South China and prevention [J]. Soils, 2013, 45(4): 577−584.(in Chinese)
    [6]
    张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应 [J]. 生态学杂志, 2019, 38(6):1900−1908.

    ZHANG L Y, ZHAO X Q, SHEN R F. Soil acidification and its ecological effects [J]. Chinese Journal of Ecology, 2019, 38(6): 1900−1908.(in Chinese)
    [7]
    HALING R, SIMPSON R, DELHAIZE E, et al. Effect of lime on root growth, morphology and the rhizosheath of cereal seedlings growing in an acid soil [J]. Plant and Soil, 2010, 327: 199−212. doi: 10.1007/s11104-009-0047-5
    [8]
    袁金华, 徐仁扣. 生物质炭对酸性土壤改良作用的研究进展 [J]. 土壤, 2012, 44(4):541−547.

    YUAN J H, XU R K. Research progress of amelioration effects of biochars on acid soils [J]. Soils, 2012, 44(4): 541−547.(in Chinese)
    [9]
    易杰祥, 吕亮雪, 刘国道. 土壤酸化和酸性土壤改良研究 [J]. 华南热带农业大学学报, 2006(1):23−28.

    YI J X, LÜ L X, LIU G D. Research on soil acidification and acidic soil’s melioration [J]. Journal of South China University of Tropical Agriculture, 2006(1): 23−28.(in Chinese)
    [10]
    汪瑞清, 肖运萍, 魏林根, 等. 土壤改良剂对红壤性低产地的应用效果比较研究 [J]. 江西农业学报, 2011, 23(3):75−77,81.

    WANG R Q, XIAO Y P, WEI L G, et al. Comparative study on effects of soil amendment application in low-yielding red-soil land [J]. Acta Agriculturae Jiangxi, 2011, 23(3): 75−77,81.(in Chinese)
    [11]
    张思文, 陈晓辉, 蔡远扬, 等. 酸性红壤添加石灰对甜玉米幼苗生长、养分累积和土壤理化性质的影响 [J]. 中国农业大学学报, 2022, 27(3):41−52. doi: 10.11841/j.issn.1007-4333.2022.03.06

    ZHANG S W, CHEN X H, CAI Y Y, et al. Effects of supplement of lime in acidic red soil on the sweet maize seedling growth, nutrient accumulation, and soil physi-chemical properties [J]. Journal of China Agricultural University, 2022, 27(3): 41−52.(in Chinese) doi: 10.11841/j.issn.1007-4333.2022.03.06
    [12]
    段媛媛, 吴佳奇, 周武先, 等. 不同改良剂对连作大黄产量及其土壤肥力的影响 [J]. 南方农业学报, 2021, 52(3):753−761.

    DUAN Y Y, WU J Q, ZHOU W X, et al. Effects of different amendments on the yield of Rheum officinale Baill. and rhizospheric soil fertility under continuous cropping system [J]. Journal of Southern Agriculture, 2021, 52(3): 753−761.(in Chinese)
    [13]
    罗俊, 林兆里, 李诗燕, 等. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响 [J]. 作物学报, 2020, 46(4):596−613. doi: 10.3724/SP.J.1006.2020.94102

    LUO J, LIN Z L, LI S Y, et al. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field [J]. Acta Agronomica Sinica, 2020, 46(4): 596−613.(in Chinese) doi: 10.3724/SP.J.1006.2020.94102
    [14]
    刘琼峰, 蒋平, 李志明, 等. 湖南省水稻主产区酸性土壤施用石灰的改良效果 [J]. 湖南农业科学, 2014(13):29−32.

    LIU Q F, JIANG P, LI Z M, et al. Amelioration effects of Liming on acid soil in main rice producing areas in Hunan [J]. Hunan Agricultural Sciences, 2014(13): 29−32.(in Chinese)
    [15]
    王怀嵩, 张涛. 农业土壤健康评价体系研究进展 [J]. 生态与农村环境学报, 2022, 38(9):1093−1100.

    WANG H S, ZHANG T. Research progress of agricultural soil health evaluation system [J]. Journal of Ecology and Rural Environment, 2022, 38(9): 1093−1100.(in Chinese)
    [16]
    张影, 胡承孝, 谭启玲, 等. 施用石灰对温州蜜柑树体营养和果实品质及酸性柑橘园土壤养分有效性的影响 [J]. 华中农业大学学报, 2014, 33(4):72−76.

    ZHANG Y, HU C X, TAN Q L, et al. Effects of liming on nutrition status, quality of satsuma mandarin and acid soil nutrients availability of citrus orchard [J]. Journal of Huazhong Agricultural University, 2014, 33(4): 72−76.(in Chinese)
    [17]
    谢志南, 庄伊美, 王仁玑, 等. 福建亚热带果园土壤pH值与有效态养分含量的相关性 [J]. 园艺学报, 1997, 24(3):209−214.

    XIE Z N, ZHUANG Y M, WANG R J, et al. Correlation between soil pH and the contents of available nutrients in selected soils from three kinds of orchards at subtropical zone in Fujian [J]. Acta Horticulturae Sinica, 1997, 24(3): 209−214.(in Chinese)
    [18]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999.
    [19]
    DENNIS K L, WANG Y W, BLATNER N R, et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells [J]. Cancer Research, 2013, 73(19): 5905−5913. doi: 10.1158/0008-5472.CAN-13-1511
    [20]
    XIAO H, WANG B, LU S B, et al. Soil acidification reduces the effects of short‐term nutrient enrichment on plant and soil biota and their interactions in grasslands [J]. Global Change Biology, 2020, 26: 4626−4637. doi: 10.1111/gcb.15167
    [21]
    张义杰, 徐杰, 陆仁窗, 等. 生石灰对林下酸化土壤的调控作用及三七生长的影响 [J]. 应用生态学报, 2022, 33(4):972−980.

    ZHANG Y J, XU J, LU R C, et al. Modification of quicklime on acid soil under forest and their effect on the growth of Panax notoginseng [J]. Chinese Journal of Applied Ecology, 2022, 33(4): 972−980.(in Chinese)
    [22]
    胡敏, 向永生, 鲁剑巍. 石灰用量对酸性土壤pH值及有效养分含量的影响 [J]. 中国土壤与肥料, 2017(4):72−77.

    HU M, XIANG Y S, LU J W. Effects of lime application rates on soil pH and available nutrient content in acidic soils [J]. Soil and Fertilizer Sciences in China, 2017(4): 72−77.(in Chinese)
    [23]
    苏杨, 张俊涛, 李铤, 等. 4种改良材料对城市绿地酸性土壤的改良效果 [J]. 林业与环境科学, 2021, 37(4):62−68.

    SU Y, ZHANG J T, LI T, et al. Effects of four amendments on acidic soils of urban green space [J]. Forestry and Environmental Science, 2021, 37(4): 62−68.(in Chinese)
    [24]
    蔡东, 肖文芳, 李国怀. 施用石灰改良酸性土壤的研究进展 [J]. 中国农学通报, 2010, 26(9):206−213.

    CAI D, XIAO W F, LI G H. Advance on study of liming on acid soils [J]. Chinese Agricultural Science Bulletin, 2010, 26(9): 206−213.(in Chinese)
    [25]
    LU X F, GILLIAM F S, GUO J Y, et al. Decrease in soil pH has greater effects than increase in above-ground carbon inputs on soil organic carbon in terrestrial ecosystems of China under nitrogen enrichment [J]. Journal of Applied Ecology, 2022, 59(3): 768−778. doi: 10.1111/1365-2664.14091
    [26]
    曹文超, 宋贺, 王娅静, 等. 农田土壤N2O排放的关键过程及影响因素 [J]. 植物营养与肥料学报, 2019, 25(10):1781−1798.

    CAO W C, SONG H, WANG Y J, et al. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1781−1798.(in Chinese)
    [27]
    ZHANG Y, ZHAO J, HUANG X Q, et al. Microbial pathways account for the pH effect on soil N2O production [J]. European Journal of Soil Biology, 2021, 106: 103337. doi: 10.1016/j.ejsobi.2021.103337
    [28]
    WEI Z, YANG T J, FRIMAN V P, et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health [J]. Nature Communications, 2015, 6(1): 1−9.
    [29]
    王海斌, 陈晓婷, 丁力, 等. 土壤酸度对茶树根际土壤微生物群落多样性影响 [J]. 热带作物学报, 2018, 39(3):448−454.

    WANG H B, CHEN X T, DING L, et al. Effect of soil acidity on microbial diversity in rhizospheric soils of tea plants [J]. Chinese Journal of Tropical Crops, 2018, 39(3): 448−454.(in Chinese)
    [30]
    陶玲, 李晓莉, 朱建强, 等. 施用生石灰对精养池塘浮游细菌群落结构和多样性的影响 [J]. 水生生物学报, 2017, 41(2):399−406.

    TAO L, LI X L, ZHU J Q, et al. Effects of quicklime application on community structure and diversity of bacterioplankton in intensive culture ponds [J]. Acta Hydrobiologica Sinica, 2017, 41(2): 399−406.(in Chinese)
    [31]
    宋宇, 王鹏, 韦月平. 不同稻田共作模式对土壤细菌群落结构的影响 [J]. 西北农业学报, 2020, 29(2):216−223.

    SONG Y, WANG P, WEI Y P. Effects of different co-cultivation patterns of rice field on soil bacterial communities structure [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(2): 216−223.(in Chinese)
    [32]
    徐光泽, 席飞虎, 张重义. 施用生石灰对烤烟根际生物学特征及烟叶产质量的影响 [J]. 江西农业学报, 2014, 26(7):67−70.

    XU G Z, XI F H, ZHANG Z Y. Effects of using quick lime on biological characteristics of rhizospheric microorganisms of flue-cured tobacco, and yield and quality of tobacco leaves [J]. Acta Agriculturae Jiangxi, 2014, 26(7): 67−70.(in Chinese)
    [33]
    GRIFFITHS R I, THOMSON B C, JAMES P, et al. The bacterial biogeography of British soils [J]. Environmental Microbiology, 2011, 13(6): 1642−1654. doi: 10.1111/j.1462-2920.2011.02480.x
    [34]
    CHEN L L, XU H B, WU S Y, et al. Plant and soil properties mediate the response of soil microbial communities to moderate grazing in a semiarid grassland of Northern China [J]. Journal of Environmental Management, 2021, 284: 112005. doi: 10.1016/j.jenvman.2021.112005
    [35]
    LIU L L, HUANG X Q, ZHANG J B, et al. Deciphering the relative importance of soil and plant traits on the development of rhizosphere microbial communities [J]. Soil Biology and Biochemistry, 2020, 148: 107909. doi: 10.1016/j.soilbio.2020.107909
    [36]
    SUN H, TERHONEN E, KOSKINEN K, et al. Bacterial diversity and community structure along different peat soils in boreal forest [J]. Applied Soil Ecology, 2014, 74: 37−45. doi: 10.1016/j.apsoil.2013.09.010
    [37]
    FAZI S, AMALFITANO S, PERNTHALER J, et al. Bacterial communities associated with benthic organic matter in headwater stream microhabitats [J]. Environmental Microbiology, 2005, 7(10): 1633−1640. doi: 10.1111/j.1462-2920.2005.00857.x
    [38]
    IBRAHIM M M, TONG C X, HU K, et al. Biochar-fertilizer interaction modifies N-sorption, enzyme activities and microbial functional abundance regulating nitrogen retention in rhizosphere soil [J]. Science of the Total Environment, 2020, 739: 140065. doi: 10.1016/j.scitotenv.2020.140065
    [39]
    宋宇, 丛培东, 曲贵伟, 等. 不同复合种养模式稻田土壤细菌群落结构比较分析 [J]. 中国稻米, 2022, 28(3):47−51.

    SONG Y, CONG P D, QU G W, et al. Comparative analysis of bacterial community structure in paddy soil under different complex cultivation models [J]. China Rice, 2022, 28(3): 47−51.(in Chinese)
    [40]
    王明元, 侯式贞, 董涛, 等. 香蕉假茎生物炭对根际土壤细菌丰度和群落结构的影响[J]. 微生物学报, 2019, 59(7): 1363-1372.

    WANG M Y, HOU S Z, DONG T, et al. Effects of banana pseudostem biochar on bacterial abundance and community structure in rhizosphere soil[J]. Acta Microbiologica Sinica, 2019, 59(7): 1363-1372. (in Chinese)
    [41]
    杨星鹏, 张志斌, 朱笃. 小单胞菌属次级代谢产物及其生物活性研究进展 [J]. 天然产物研究与开发, 2019, 31:908−915,921.

    YANG X P, ZHANG Z B, ZHU D. Review on secondary metabolites and its biological activities from genus Micromonospora [J]. Natural Product Research and Developmen, 2019, 31: 908−915,921.(in Chinese)
    [42]
    XIE F C, ZHANG G Y, ZHENG Q J, et al. Beneficial effects of mixing Kentucky bluegrass with red fescue via plant-soil interactions in black soil of northeast China [J]. Frontiers in Microbiology, 2020, 11: 556118. doi: 10.3389/fmicb.2020.556118
    [43]
    王英成, 姚世庭, 金鑫, 等. 三江源区高寒退化草甸土壤细菌多样性的对比研究 [J]. 生态环境学报, 2022, 31(4):695−703.

    WANG Y C, YAO S T, JIN X, et al. Comparative study on soil bacterial diversity of degraded alpine meadow in the Sanjiangyuan region [J]. Ecology and Environmental Sciences, 2022, 31(4): 695−703.(in Chinese)
    [44]
    LAUBER C L, HAMADY M, KNIGHT R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale [J]. Applied and Environmental Microbiology, 2009, 75(15): 5111−5120. doi: 10.1128/AEM.00335-09
    [45]
    BRADY N C, WEIL R. The nature and properties of soils[M]. 14th ed. New Jersey: Prentice Hall, 2007.
    [46]
    王娟娟, 朱紫娟, 钱晓晴, 等. 全年稻麦秸秆还田对稻田土壤细菌群落结构的影响 [J]. 中国土壤与肥料, 2022(4):57−65.

    WANG J J, ZHU Z J, QIAN X Q, et al. Effects of year-round rice-wheat straw return on soil bacterial community structure in paddy fields [J]. Soil and Fertilizer Sciences in China, 2022(4): 57−65.(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (318) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return