• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
ZHAO Z Q, ZHU J C, LI J Y, et al. Genome-wide Identification and Expressions under Stresses of RLCK VI Family in Gossypium barbadense [J]. Fujian Journal of Agricultural Sciences,2023,38(6):686−697 doi: 10.19303/j.issn.1008-0384.2023.06.007
Citation: ZHAO Z Q, ZHU J C, LI J Y, et al. Genome-wide Identification and Expressions under Stresses of RLCK VI Family in Gossypium barbadense [J]. Fujian Journal of Agricultural Sciences,2023,38(6):686−697 doi: 10.19303/j.issn.1008-0384.2023.06.007

Genome-wide Identification and Expressions under Stresses of RLCK VI Family in Gossypium barbadense

doi: 10.19303/j.issn.1008-0384.2023.06.007
  • Received Date: 2022-04-25
  • Rev Recd Date: 2022-11-27
  • Available Online: 2023-06-02
  • Publish Date: 2023-06-28
  •   Objective   Genomes and expressions under stresses of the RLCK VI family genes in Gossypium barbadense were determined to study the regulatory mechanisms of the growth, development, and stress resistance of cotton plants.   Method   Based on the latest released data on G. barbadense genome, bioinformatics of GbRLCK VI was analyzed to understand the associated physiochemical properties, sequence characteristics, gene replication, phylogenetic evolution, and expression.   Result   Thirty-nine RLCK VI were identified in G. barbadense which were clustered into two categories of 22 in Group A and 17 in Group B. Both groups contained a kinase domain distributed in 16 chromosomes with most of them located in plasma membrane. The gene family had undergone chromosome fragment duplication events during evolution. Since all Ka/Ks of the gene pairs were less than 1, strict purification and selection might have taken place in the process. The expressions of GbRLCK VI as shown by the transcriptome analysis varied in 10 different tissues with 11 predominantly expressed in the floral organs, while 9 in the roots, stems, and leaves. Under different stresses, 8 genes were significantly expressed by the imposed drought, salt, and verticillium wilt, and 4 only by verticillium wilt. On 4 selected genes, i.e., GB_ A12G0061, GB_ A11G2234, GB_ D01G2010, and GB_ D03G0730, qRT-PCR showed their expressions under drought, salt, or verticillium wilt stress to agree with what the transcriptome data did. Their involvement in the stress response of the cotton plant was confirmed.   Conclusion   The genome, structure, and phylogenetic characteristics of GbRLCK VI family in G. barbadense were determined. Their roles in the growth, development, and stress responses of the cotton plant were clarified.
  • loading
  • [1]
    易黎. 拟南芥及甘蓝型油菜RBK2蛋白及相关蛋白家族生物信息学分析[D]. 郑州: 郑州大学, 2016.

    YI L. Bioinformatics analysis of RBK2 and its related protein family in Arabidopsis thaliana and Braasica napus[D]. Zhengzhou: Zhengzhou University, 2016. (in Chinese)
    [2]
    饶绍飞. 拟南芥类受体胞质激酶第七亚家族成员在先天免疫中的功能分析[D]. 北京: 中国科学院大学, 2018.

    RAO S F. Functional analysis of members of the seventh subfamily of Arabidopsis receptor cytoplasmic kinases in innate immunity[D]. Beijing: University of Chinese Academy of Sciences, 2018. (inChinese)
    [3]
    VIJ S, GIRI J, DANSANA P K, et al. The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: Organization, phylogenetic relationship, and expression during development and stress [J]. Molecular Plant, 2008, 1(5): 732−750. doi: 10.1093/mp/ssn047
    [4]
    REINER T, HOEFLE C, HUESMANN C, et al. The Arabidopsis ROP-activated receptor-like cytoplasmic kinase RLCK VI_A3 is involved in control of basal resistance to powdery mildew and trichome branching [J]. Plant Cell Reports, 2015, 34(3): 457−468. doi: 10.1007/s00299-014-1725-1
    [5]
    马银花, 李萍芳, 董文静, 等. 水稻抗性蛋白OsRRK1抗褐飞虱机理分析 [J]. 中国水稻科学, 2020, 34(6):512−519. doi: 10.16819/j.1001-7216.2020.0406

    MA Y H, LI P F, DONG W J, et al. Mechanism analysis of rice resistance protein OsRRK1 against the brown planthopper [J]. Chinese Journal of Rice Science, 2020, 34(6): 512−519.(in Chinese) doi: 10.16819/j.1001-7216.2020.0406
    [6]
    何含杰, 张党权, 唐丽, 等. 植物RLCK的生物学功能与信号途径研究进展 [J]. 植物生理学报, 2014, 50(7):885−890. doi: 10.13592/j.cnki.ppj.2014.0154

    HE H J, ZHANG D Q, TANG L, et al. Recent advance on biological function and signal pathway of receptor-like cytoplasmic kinase in plants [J]. Plant Physiology Journal, 2014, 50(7): 885−890.(in Chinese) doi: 10.13592/j.cnki.ppj.2014.0154
    [7]
    COSTA A T, BRAVO J P, KRAUSE-SAKATE R, et al. The receptor-like kinase SlSOBIR1 is differentially modulated by virus infection but its overexpression in tobacco has no significant impact on virus accumulation [J]. Plant Cell Reports, 2016, 35(1): 65−75. doi: 10.1007/s00299-015-1868-8
    [8]
    JURCA M E, BOTTKA S, FEHÉR A. Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI) [J]. Plant Cell Reports, 2008, 27(4): 739−748. doi: 10.1007/s00299-007-0494-5
    [9]
    JUNG K H, CAO P J, SEO Y S, et al. The Rice Kinase Phylogenomics Database: A guide for systematic analysis of the rice kinase super-family [J]. Trends in Plant Science, 2010, 15(11): 595−599. doi: 10.1016/j.tplants.2010.08.004
    [10]
    LEE L Y C, HOU X L, FANG L, et al. STUNTED mediates the control of cell proliferation by GA in Arabidopsis [J]. Development, 2012, 139(9): 1568−1576. doi: 10.1242/dev.079426
    [11]
    VALKAI I, KÉNESI E, DOMONKOS I, et al. The Arabidopsis RLCK VI_A2 kinase controls seedling and plant growth in parallel with gibberellin [J]. International Journal of Molecular Sciences, 2020, 21(19): 7266. doi: 10.3390/ijms21197266
    [12]
    ENDERS T A, FRICK E M, STRADER L C. An Arabidopsis kinase cascade influences auxin-responsive cell expansion [J]. The Plant Journal, 2017, 92(1): 68−81. doi: 10.1111/tpj.13635
    [13]
    LAL N K, FISHER A J, DINESH-KUMAR S P. Arabidopsis receptor-like cytoplasmic kinase BIK1: Purification, crystallization and X-ray diffraction analysis[J]. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72(Pt 10): 738-742.
    [14]
    LU D P, WU S J, GAO X Q, et al. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1): 496−501. doi: 10.1073/pnas.0909705107
    [15]
    HUESMANN C, REINER T, HOEFLE C, et al. Barley ROP binding kinase1 is involved in microtubule organization and in basal penetration resistance to the barley powdery mildew fungus [J]. Plant Physiology, 2012, 159(1): 311−320. doi: 10.1104/pp.111.191940
    [16]
    马银花, 莫凯琴, 刘璐, 等. 过量表达OsRRK1对水稻叶片发育的影响 [J]. 中国农业科学, 2021, 54(5):877−886. doi: 10.3864/j.issn.0578-1752.2021.05.001

    MA Y H, MO K Q, LIU L, et al. Effect of overexpression of OsRRK1 gene on rice leaf development [J]. Scientia Agricultura Sinica, 2021, 54(5): 877−886.(in Chinese) doi: 10.3864/j.issn.0578-1752.2021.05.001
    [17]
    田超, 王冉, 彭艳, 等. 植物抗逆胁迫相关蛋白激酶的研究进展 [J]. 安徽农业科学, 2015, 43(20):4−6,37. doi: 10.3969/j.issn.0517-6611.2015.20.002

    TIAN C, WANG R, PENG Y, et al. Research advance of protein kinase in plant resistant to adversity stress [J]. Journal of Anhui Agricultural Sciences, 2015, 43(20): 4−6,37.(in Chinese) doi: 10.3969/j.issn.0517-6611.2015.20.002
    [18]
    赵曾强, 孙国清, 张国丽, 等. 海岛棉GbRLCK10基因克隆及表达分析 [J]. 西北植物学报, 2017, 37(11):2130−2138. doi: 10.7606/j.issn.1000-4025.2017.11.2130

    ZHAO Z Q, SUN G Q, ZHANG G L, et al. Cloning and expression analysis of the GbRLCK10 gene in Gossypium barbadense L. [J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(11): 2130−2138.(in Chinese) doi: 10.7606/j.issn.1000-4025.2017.11.2130
    [19]
    RAMEGOWDA V, BASU S, KRISHNAN A, et al. Rice growth under drought kinase is required for drought tolerance and grain yield under normal and drought stress conditions [J]. Plant Physiology, 2014, 166(3): 1634−1645. doi: 10.1104/pp.114.248203
    [20]
    SUN X L, SUN M Z, LUO X, et al. A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses [J]. Planta, 2013, 237(6): 1527−1545. doi: 10.1007/s00425-013-1864-6
    [21]
    DORJGOTOV D, JURCA M E, FODOR-DUNAI C, et al. Plant Rho-type (Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro [J]. FEBS Letters, 2009, 583(7): 1175−1182. doi: 10.1016/j.febslet.2009.02.047
    [22]
    AGRAWAL G K, IWAHASHI H, RAKWAL R. Small GTPase ‘Rop’: Molecular switch for plant defense responses [J]. FEBS Letters, 2003, 546(2/3): 173−180.
    [23]
    HU Y, CHEN J D, FANG L, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton [J]. Nature Genetics, 2019, 51(4): 739−748. doi: 10.1038/s41588-019-0371-5
    [24]
    CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [25]
    KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Molecular Biology and Evolution, 2016, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    [26]
    VERA ALVAREZ R, PONGOR L S, MARIÑO-RAMÍREZ L, et al. TPMCalculator: One-step software to quantify mRNA abundance of genomic features [J]. Bioinformatics, 2019, 35(11): 1960−1962. doi: 10.1093/bioinformatics/bty896
    [27]
    SHABAN M, MIAO Y H, ULLAH A, et al. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae [J]. Plant Physiology and Biochemistry, 2018, 125: 193−204. doi: 10.1016/j.plaphy.2018.02.011
    [28]
    WANG M J, TU L L, YUAN D J, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense [J]. Nature Genetics, 2019, 51(2): 224−229. doi: 10.1038/s41588-018-0282-x
    [29]
    庞丹丹, 刘玉飞, 田易萍, 等. 茶树ZF-HD转录因子基因家族的鉴定及表达分析 [J]. 南方农业学报, 2021, 52(3):632−640. doi: 10.3969/j.issn.2095-1191.2021.03.011

    PANG D D, LIU Y F, TIAN Y P, et al. Identification and expression analysis of ZF-HD transcription factor gene family in Camellia sinensis [J]. Journal of Southern Agriculture, 2021, 52(3): 632−640.(in Chinese) doi: 10.3969/j.issn.2095-1191.2021.03.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (344) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return