• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
CHEN X C, XU J R, GAO P Y, et al. Identification and Inhibitory Effect on Lasiodiplodia theobromae of Actinomycetes in Camellia sinensis Rhizosphere Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(9):1103−1111 doi: 10.19303/j.issn.1008-0384.2023.09.012
Citation: CHEN X C, XU J R, GAO P Y, et al. Identification and Inhibitory Effect on Lasiodiplodia theobromae of Actinomycetes in Camellia sinensis Rhizosphere Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(9):1103−1111 doi: 10.19303/j.issn.1008-0384.2023.09.012

Identification and Inhibitory Effect on Lasiodiplodia theobromae of Actinomycetes in Camellia sinensis Rhizosphere Soil

doi: 10.19303/j.issn.1008-0384.2023.09.012
  • Received Date: 2023-04-17
  • Rev Recd Date: 2023-06-13
  • Available Online: 2023-10-13
  • Publish Date: 2023-09-28
  •   Objective  Actinomycetes collected from the rhizosphere soils of old tea plants were isolated to screen for species unknown previously and their potential pathogenic inhibitory effect.  Method  Soil specimens were gathered from the target lots at Shuixian, Fujian to isolate actinomycetes by plate culture. Phylogenetic trees based on 16S rRNA gene for the isolates were constructed and diversity index calculated in the tea plant rhizosphere soils.   Result   (1) Eighty-one actinomycete strains were obtained that belonged to Streptomyces(54.32%), Arthrobacter (27.16%), Microbacterium (11.11%), Kitasatospora(4.94%), and Curtobacterium (2.47%). (2) In comparing with the reference strain, 20 of the 81 taxa showed less than 98.65% similarity. (3) Seven strains of the Streptomyces significantly inhibited the growth of Lasiodiplodia theobromae, of which, the one code-named WYS-24 reached the highest rate at 63.92%.   Conclusion   Abundantly diverse actinomycetes resided in the rhizosphere of old tea plants in Wuyishan region. They were a rich resource for in-depth studies and development for biological inhibitors against plant pathogens.
  • loading
  • [1]
    王飞权. 不同树龄武夷岩茶品质差异形成的机理[D]. 杨凌: 西北农林科技大学, 2020.

    WANG F Q. The formation mechanism of the quality difference of Wuyi rock tea made from different tree ages[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
    [2]
    徐邢燕. 基于代谢组学的武夷肉桂茶不同烘焙程度、等级及地域品质差异研究[D]. 福州: 福建农林大学, 2020

    XU X Y. Metabolome analysis reveals quality differences of baking degrees, grades and areas in Wuyi Rougui tea[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. (in Chinese)
    [3]
    商虎, 朱陈松, 叶婷婷, 等. 老枞水仙品质特征分析 [J]. 中国农学通报, 2022, 38(10):141−148.

    SHANG H, ZHU C S, YE T T, et al. The quality characteristics of Camellia sinensis’Fujian Shuixian’ [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 141−148.(in Chinese)
    [4]
    KIM E S. Recent advances of actinomycetes [J]. Biomolecules, 2021, 11(2): 134. doi: 10.3390/biom11020134
    [5]
    MAST Y, STEGMANN E. Actinomycetes: The antibiotics producers [J]. Antibiotics, 2019, 8(3): 105. doi: 10.3390/antibiotics8030105
    [6]
    JAGANNATHAN S V, MANEMANN E M, ROWE S E, et al. Marine actinomycetes, new sources of biotechnological products [J]. Marine Drugs, 2021, 19(7): 365. doi: 10.3390/md19070365
    [7]
    DUTTA J, THAKUR D. Diversity of culturable bacteria endowed with antifungal metabolites biosynthetic characteristics associated with tea rhizosphere soil of Assam, India [J]. BMC Microbiology, 2021, 21(1): 216. doi: 10.1186/s12866-021-02278-z
    [8]
    DHAR PURKAYASTHA G, MANGAR P, SAHA A, et al. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea [J]. PLoS One, 2018, 13(2): e0191761. doi: 10.1371/journal.pone.0191761
    [9]
    WANG Q M, YANG R J, PENG W S, et al. Tea plants with gray blight have altered root exudates that recruit a beneficial rhizosphere microbiome to prime immunity against aboveground pathogen infection [J]. Frontiers in Microbiology, 2021, 12: 774438. doi: 10.3389/fmicb.2021.774438
    [10]
    WASCHULIN V, BORSETTO C, JAMES R, et al. Biosynthetic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic sequencing [J]. The ISME Journal, 2022, 16(1): 101−111. doi: 10.1038/s41396-021-01052-3
    [11]
    任亚峰, 包兴涛, 李冬雪, 等. 茶树叶斑病病原菌可可毛色二孢菌的鉴定 [J]. 植物病理学报, 2019, 49(6):857−861.

    REN Y F, BAO X T, LI D X, et al. Identification of the pathogen Lasiodiplodia theobromae causing tea leaf spot [J]. Acta Phytopathologica Sinica, 2019, 49(6): 857−861.(in Chinese)
    [12]
    戴利铭, 刘一贤, 施玉萍, 等. 橡胶树可可毛色二孢叶斑病菌生物学特性及药剂筛选试验 [J]. 广东农业科学, 2018, 45(7):87−93.

    DAI L M, LIU Y X, SHI Y P, et al. The biological characteristics of Lasiodiplodia theobromae causing leaf spot on rubber tree and the selection of fungicides in laboratory [J]. Guangdong Agricultural Sciences, 2018, 45(7): 87−93.(in Chinese)
    [13]
    黄艳花, 宁平, 黄远光, 等. 百香果茎基腐病病原菌鉴定及其生物学特性 [J]. 西南农业学报, 2022, 35(1):105−112.

    HUANG Y H, NING P, HUANG Y G, et al. Identification and biological characterization of stem rot pathogens from passion fruit [J]. Southwest China Journal of Agricultural Sciences, 2022, 35(1): 105−112.(in Chinese)
    [14]
    唐中发, 秦春秀, 缪卫国, 等. 海南菠萝一种叶斑病病原菌的分离与鉴定及多基因序列分析 [J]. 基因组学与应用生物学, 2021, 40(3):1219−1226.

    TANG Z F, QIN C X, MIAO W G, et al. Isolation, identification and analysis of multiple gene sequences of a pathogen of leaf spot disease on pineapple in Hainan [J]. Genomics and Applied Biology, 2021, 40(3): 1219−1226.(in Chinese)
    [15]
    卜旭莹, 任敏, 万传星, 等. 帕米尔高原可培养需氧冷适应细菌及古菌多样性 [J]. 微生物学报, 2022, 62(7):2568−2581.

    BU X Y, REN M, WAN C X, et al. Diversity of aerobic cold-adapted bacteria and Archaea isolated from the Pamir Plateau [J]. Acta Microbiologica Sinica, 2022, 62(7): 2568−2581.(in Chinese)
    [16]
    CHEN J W, CHEN J, WANG S Q, et al. Amycolachromones A-F, isolated from a streptomycin-resistant strain of the deep-sea marine actinomycete Amycolatopsis sp. WP1 [J]. Marine Drugs, 2022, 20(3): 162. doi: 10.3390/md20030162
    [17]
    马瑞, 张发, 王传琪, 等. 云南荷花温泉放线菌物种多样性及其生物活性 [J]. 大理大学学报, 2019, 4(12):69−74.

    MA R, ZHANG F, WANG C Q, et al. Species diversity and biological activity of Actinobacteria in Hehua hot spring of Yunnan Province [J]. Journal of Dali University, 2019, 4(12): 69−74.(in Chinese)
    [18]
    关统伟, 向慧平, 冯栩, 等. 硝尔库勒湖可培养放线菌多样性及其功能酶和抗细菌活性 [J]. 微生物学报, 2018, 58(10):1864−1874.

    GUAN T W, XIANG H P, FENG X, et al. Diversity and antibacterial activity of culturable Actinobacteria from xiaoerkule lake [J]. Acta Microbiologica Sinica, 2018, 58(10): 1864−1874.(in Chinese)
    [19]
    王梦雨, 黄美娟, 李茜, 等. 云南金铁锁根可培养放线菌多样性及其抗菌活性研究 [J]. 微生物学报, 2022, 62(5):1905−1918.

    WANG M Y, HUANG M J, LI Q, et al. Diversity and antimicrobial activities of culturable endophytic actinomyces in the roots of Psammosilene tunicoides in Yunnan Province [J]. Acta Microbiologica Sinica, 2022, 62(5): 1905−1918.(in Chinese)
    [20]
    吴佳, 李晓霞, 舒伟学, 等. 缬草内生菌和根际放线菌的分离及安莎类抗生素的筛选 [J]. 西北农林科技大学学报(自然科学版), 2019, 47(6):107−114.

    WU J, LI X X, SHU W X, et al. Isolation of endophytic and rhizospheric actinomycetes of Valerian and screening of ansamycins antibiotics [J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(6): 107−114.(in Chinese)
    [21]
    杜用玺. 丹参根际放线菌的防病促生功能研究[D]. 广州: 广东药科大学, 2021.

    DU Y X. Study on the function of disease prevention and growth-promotion of rhizosphere actinomycetes from Salvia miltiorrhiza bge. [D]. Guangzhou: Guangdong Pharmaceutical University, 2021. (in Chinese)
    [22]
    査艳景, 姜国银, 张炳炎, 等. 枸骨根际放线菌ZY-2的分离鉴定及其抑菌活性检测研究 [J]. 昆明学院学报, 2022, 44(3):105−110.

    ZHA Y J, JIANG G Y, ZHANG B Y, et al. Isolation, identification and bacteriostatic activity of actinomycete ZY-2 from the rhizosphere soil of Ilex cornuta L [J]. Journal of Kunming University, 2022, 44(3): 105−110.(in Chinese)
    [23]
    WANG Z R, ZHONG T, CHEN K W, et al. Antifungal activity of volatile organic compounds produced by Pseudomonas fluorescens ZX and potential biocontrol of blue mold decay on postharvest citrus [J]. Food Control, 2021, 120: 107499. doi: 10.1016/j.foodcont.2020.107499
    [24]
    ZHOU D B, JING T, CHEN Y F, et al. Biocontrol potential of a newly isolated Streptomyces sp. HSL-9B from mangrove forest on postharvest anthracnose of mango fruit caused by Colletotrichum gloeosporioides [J]. Food Control, 2022, 135: 108836. doi: 10.1016/j.foodcont.2022.108836
    [25]
    刘双龙, 杨德洁, 牛晓庆, 等. 可可毛色二孢拮抗菌的鉴定及发酵条件优化 [J]. 南方农业学报, 2022, 53(8):2186−2195.

    LIU S L, YANG D J, NIU X Q, et al. Identification and fermentation condition optimization of antagonistic bacteria against Lasiodiplodia theobromae [J]. Journal of Southern Agriculture, 2022, 53(8): 2186−2195.(in Chinese)
    [26]
    LI M Y, WANG J L, YAO T, et al. Bacterial diversity and community structure in the rhizosphere of four halophytes [J]. Current Microbiology, 2021, 78(7): 2720−2732. doi: 10.1007/s00284-021-02536-3
    [27]
    范中菡. 四川阿坝红花绿绒蒿内生及根际放线菌多样性[D]. 雅安: 四川农业大学, 2016

    FAN Z H. Diversity of endophytic Actinobacteria and rhizosphere soil Actinobacteria from Meconopsis punicea sampled in Aba, Sichuan[D]. Yaan: Sichuan Agricultural University, 2016. (in Chinese)
    [28]
    BERHONGARAY G, JANSSENS I A, KING J S, et al. Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture [J]. Plant and Soil, 2013, 373(1): 269−283.
    [29]
    EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911−E920.
    [30]
    BECKERS B, OP DE BEECK M, WEYENS N, et al. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees [J]. Microbiome, 2017, 5(1): 25. doi: 10.1186/s40168-017-0241-2
    [31]
    SAMMUT D, ELLIOT C A, KIELY D G, et al. Central venous catheter-related blood stream infections in patients receiving intravenous iloprost for pulmonary hypertension [J]. European Journal of Clinical Microbiology & Infectious Diseases, 2013, 32(7): 883−889.
    [32]
    KIM M, OH H S, PARK S C, et al. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2): 346-351.
    [33]
    XIE C L, NIU S W, ZHOU T T, et al. Chemical constituents and chemotaxonomic study on the marine actinomycete Williamsia sp. MCCC 1A11233 [J]. Biochemical Systematics and Ecology, 2016, 67: 129−133. doi: 10.1016/j.bse.2016.06.004
    [34]
    刘一贤, 施玉萍, 戴利铭, 等. 橡胶褐根病拮抗放线菌17-7的筛选、鉴定及发酵条件优化 [J]. 微生物学通报, 2020, 47(1):118−129. doi: 10.13344/j.microbiol.china.190160

    LIU Y X, SHI Y P, DAI L M, et al. Screening, identification and fermentation optimization of an antimicrobial actinomycete strain 17-7 to Phellinus noxius [J]. Microbiology China, 2020, 47(1): 118−129.(in Chinese) doi: 10.13344/j.microbiol.china.190160
    [35]
    高雪, 辜运富, 尼玛扎西, 等. 西藏青稞根际土壤可培养放线菌的遗传多样性及其促生功能分析[J]. 四川农业大学学报, 2019, 37(6): 777-784.

    GAO X, GU Y F, NYIMA T S, et al. Analysis of the genetic diversity and promoting functions of the culturable actinomycetes in the rhizosphere of highland barley in Tibet[J]. Journal of Sichuan Agricultural University,
    [36]
    郑洁, 庹利, 李伟, 等. 山西太子滩温泉土壤放线菌多样性及功能基因筛选的研究 [J]. 中国酿造, 2019, 38(9):49−53.

    ZHENG J, TUO L, LI W, et al. Diversity and screening of functional gene of actinomycetes isolated from soil in hot spring of Shanxi Prince Beach [J]. China Brewing, 2019, 38(9): 49−53.(in Chinese)
    [37]
    PARK Y, KOOK M, NGO H T T, et al. Arthrobacter bambusae sp. nov., isolated from soil of a bamboo grove [J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt_9): 3069−3074. doi: 10.1099/ijs.0.064550-0
    [38]
    PARIHAR K, GEHLOT P, MATHUR M, et al. Species composition and diversity dynamics of actinomycetes in arid and semi-arid salt basins of Rajasthan [J]. Current Microbiology, 2022, 79(6): 168. doi: 10.1007/s00284-022-02851-3
    [39]
    MA A A, ZHANG X F, JIANG K, et al. Phylogenetic and physiological diversity of cultivable actinomycetes isolated from alpine habitats on the qinghai-tibetan plateau [J]. Frontiers in Microbiology, 2020, 11: 555351. doi: 10.3389/fmicb.2020.555351
    [40]
    GOSWAMI G, DEKA P, DAS P, et al. Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam [J]. 3 Biotech, 2017, 7(3): 229. doi: 10.1007/s13205-017-0864-9
    [41]
    漆思思. 产抗菌物质海洋放线菌的筛选及其次级代谢产物和活性的研究[D]. 南昌: 南昌大学, 2020

    QI S S. Screening of marine actinomycetes producing antimicrobial substances and study on their secondary metabolites and activities[D]. Nanchang: Nanchang University, 2020. (in Chinese)
    [42]
    吴巧灵, 孙长利, 周镇槟, 等. 石磺来源海洋链霉菌Streptomyces ardesiacus scsio LO23中germicidin类化合物的分离鉴定及其生物合成分析 [J]. 微生物学报, 2022, 62(7):2594−2609.

    WU Q L, SUN C L, ZHOU Z B, et al. Isolation of germicidins and analysis of their biosynthetic pathways in Streptomyces ardesiacus SCSIO LO23, a marine-derived actinomycete from Onchidium sp. [J]. Acta Microbiologica Sinica, 2022, 62(7): 2594−2609.(in Chinese)
    [43]
    朱展鹏. 马铃薯疮痂病病原菌多样性分析及抗病种质筛选[D]. 武汉: 华中农业大学, 2020

    ZHU Z P. Diversity analysis of potato common scab pathogens and disease-resistant germplasm screening[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
    [44]
    TOMIHAMA T, NISHI Y, SAKAI M S, et al. Draft genome sequences of Streptomyces scabiei S58, Streptomyces turgidiscabies T45, and Streptomyces acidiscabies a10, the pathogens of potato common scab, isolated in Japan [J]. Genome Announcements, 2016, 4(2): e00062−e00016.
    [45]
    TAO X Y, ZHAO M, ZHANG Y, et al. Comparison of the expression of phospholipase D from Streptomyces halstedii in different hosts and its over-expression in Streptomyces lividans [J]. FEMS Microbiology Letters, 2019, 366(5): fnz051.
    [46]
    LIU Y H, HUANG L, FU Y, et al. A novel process for phosphatidylserine production using a Pichia pastoris whole-cell biocatalyst with overexpression of phospholipase D from Streptomyces halstedii in a purely aqueous system [J]. Food Chemistry, 2019, 274: 535−542. doi: 10.1016/j.foodchem.2018.08.105
    [47]
    CHO E, KWON O S, CHUNG B, et al. Antibacterial activity of chromomycins from a marine-derived Streptomyces microflavus [J]. Marine Drugs, 2020, 18(10): 522. doi: 10.3390/md18100522
    [48]
    李堆淑, 冀玉良. 细黄链霉菌与氮磷钾肥配施对桔梗幼苗的影响 [J]. 广西林业科学, 2018, 47(2):155−158.

    LI D S, JI Y L. Effect of the Streptomyces microflavus and NPK fertilizer on Platycodon grandiflorus seedlings [J]. Guangxi Forestry Science, 2018, 47(2): 155−158.(in Chinese)
    [49]
    SUDHA A, DURGADEVI D, ARCHANA S, et al. Unraveling the tripartite interaction of volatile compounds of Streptomyces rochei with grain mold pathogens infecting sorghum [J]. Frontiers in Microbiology, 2022, 13: 923360. doi: 10.3389/fmicb.2022.923360
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (348) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return