• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
TANG W B, LIN S S, GUO J Y, et al. Cloning and Expression of LtGH88 in Lasiodiplodia theobromae [J]. Fujian Journal of Agricultural Sciences,2023,38(9):1112−1116 doi: 10.19303/j.issn.1008-0384.2023.09.013
Citation: TANG W B, LIN S S, GUO J Y, et al. Cloning and Expression of LtGH88 in Lasiodiplodia theobromae [J]. Fujian Journal of Agricultural Sciences,2023,38(9):1112−1116 doi: 10.19303/j.issn.1008-0384.2023.09.013

Cloning and Expression of LtGH88 in Lasiodiplodia theobromae

doi: 10.19303/j.issn.1008-0384.2023.09.013
  • Received Date: 2023-02-17
  • Rev Recd Date: 2023-07-13
  • Available Online: 2023-10-25
  • Publish Date: 2023-09-28
  •   Objective  The glycoside hydrolase gene LtGH88 of Lasiodiplodia theobromae was cloned to study the mechanism of canker in Cinnamomum camphora, which is the major pathogen that causes the disease.   Methods   The LtGH88 encoding sequence was cloned by PCR from tissues of C. camphora infected by L. theobromae to determine the characteristics and functions of the protein by bioinformatic methods. Expression of the gene was detected by real-time quantitative PCR, and functions analyzed using the Agrobacterium tumefaciens mediated transient transformation in Nicotianaben thamiana.   Results   The full open reading frame of LtGH88 was 1 152 bp with a molecular weight of 42.8 kDa and a theoretical isoelectric point of 4.56. The predicted secondary structure of the protein consisted of 49.09% α helix, 11.23% extended chain, and 34.99% random coil. A signal peptide of 1-18 amino acids was located at the N terminus. The protein belonged to the glycoside hydrolase family 88 (GH88) capable of degrading pectin. LtGH88 was significantly expressed in the early stage of the infection. It did not cause cell necrosis in the leaf of N. thamiana but was able to inhibit the hypersensitive response (HR) induced by Bax.   Conclusion   It was postulated that LtGH88 in L. theobromae inhibited the immune response of C. camphora facilitating the pathogenic invasion and colonization on the host plant.
  • loading
  • [1]
    莫开林, 吴斌, 李江, 等. 樟树资源化学加工利用产业发展现状 [J]. 生物质化学工程, 2021, 55(1):15−22.

    MO K L, WU B, LI J, et al. Development status of camphor tree resources chemical processing and utilization industry [J]. Biomass Chemical Engineering, 2021, 55(1): 15−22.(in Chinese)
    [2]
    杨鼎超, 衷诚明, 郭铧艳, 等. 我国樟树病害分布及防治研究进展 [J]. 生物灾害科学, 2018, 41(3):176−183.

    YANG D C, ZHONG C M, GUO H Y, et al. Research progress of distribution and prevention of diseases in Cinnamomum camphora(L. ) presl in China [J]. Biological Disaster Science, 2018, 41(3): 176−183.(in Chinese)
    [3]
    王明生, 吴小芹, 王焱, 等. 上海市樟树病害种类调查及病害特征 [J]. 中国森林病虫, 2011, 30(2):24−28.

    WANG M S, WU X Q, WANG Y, et al. Investigation on the species and characteristics of the diseases in Cinnamomum camphora(L. ) in Shanghai [J]. Forest Pest and Disease, 2011, 30(2): 24−28.(in Chinese)
    [4]
    张晓阳, 吴松, 王美鑫, 等. 福建省樟树溃疡病病原菌的分离与鉴定 [J]. 森林与环境学报, 2020, 40(3):306−312.

    ZHANG X Y, WU S, WANG M X, et al. Isolation and identification of camphor tree canker disease pathogen in Fujian Province [J]. Journal of Forest and Environment, 2020, 40(3): 306−312.(in Chinese)
    [5]
    翟立峰, 张美鑫, 赵行, 等. 重庆樟树溃疡病病原菌的鉴定及序列分析 [J]. 林业科学研究, 2019, 32(3):18−25.

    ZHAI L F, ZHANG M X, ZHAO H, et al. Identification and sequence analysis of canker pathogen of camphor tree in Chongqing [J]. Forest Research, 2019, 32(3): 18−25.(in Chinese)
    [6]
    郭立中, 邓先琼, 韦石泉. 樟树的一种新病害: 樟树溃疡病病原菌鉴定 [J]. 植物病理学报, 1995, 25(1):28.

    GUO L Z, DENG X Q, WEI S Q. Identification on the fungal pathogen of the canker of camphor tree [J]. Acta Phytopathologica Sinica, 1995, 25(1): 28.(in Chinese)
    [7]
    吴松, 陈全助, 张晓阳, 等. 樟树溃疡病原菌生物学特性及室内毒力测定 [J]. 森林与环境学报, 2021, 41(3):308−317.

    WU S, CHEN Q Z, ZHANG X Y, et al. Studies on biological characteristics of a camphor tree canker pathogen (Neofusicoccum parvum) and fungicide laboratory toxicity [J]. Journal of Forest and Environment, 2021, 41(3): 308−317.(in Chinese)
    [8]
    KUBICEK C P, STARR T L, GLASS N L. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi [J]. Annual Review of Phytopathology, 2014, 52: 427−451. doi: 10.1146/annurev-phyto-102313-045831
    [9]
    QUOC N B, CHAU N N B. The role of cell wall degrading enzymes in pathogenesis of Magnaporthe oryzae [J]. Current Protein & Peptide Science, 2017, 18(10): 1019−1034.
    [10]
    高芬, 岳换弟, 秦雪梅, 等. 植物致病镰刀菌细胞壁降解酶的研究进展 [J]. 江苏农业学报, 2018, 34(4):955−960.

    GAO F, YUE H D, QIN X M, et al. Research advances on cell wall degrading enzymes produced by pathogenic Fusarium causing plant diseases [J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 955−960.(in Chinese)
    [11]
    潘凤英, 刘露露, 孙大运, 等. 植物病原菌糖基水解酶基因家族研究进展 [J]. 生物学杂志, 2022, 39(6):94−100.

    PAN F Y, LIU L L, SUN D Y, et al. Research progress on glycoside hydrolases gene family of plant pathogen [J]. Journal of Biology, 2022, 39(6): 94−100.(in Chinese)
    [12]
    HANE J K, PAXMAN J, JONES D A B, et al. “CATAStrophy”, a genome-informed trophic classification of filamentous plant pathogens - how many different types of filamentous plant pathogens are there? [J]. Frontiers in Microbiology, 2019, 10: 3088.
    [13]
    ZHAO Z T, LIU H Q, WANG C F, et al. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi [J]. BMC Genomics, 2013, 14: 274. doi: 10.1186/1471-2164-14-274
    [14]
    田呈明, 王笑连, 余璐, 等. 林木与病原菌分子互作机制研究进展 [J]. 南京林业大学学报(自然科学版), 2021, 45(1):1−12.

    TIAN C M, WANG X L, YU L, et al. A review on the studies of molecular interaction between forest trees and phytopathogens [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(1): 1−12.(in Chinese)
    [15]
    BRADLEY E L, ÖKMEN B, DOEHLEMANN G, et al. Secreted glycoside hydrolase proteins as effectors and invasion patterns of plant-associated fungi and oomycetes [J]. Frontiers in Plant Science, 2022, 13: 853106. doi: 10.3389/fpls.2022.853106
    [16]
    RAFIEI V, VÉLËZ H, TZELEPIS G. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence [J]. International Journal of Molecular Sciences, 2021, 22(17): 9359. doi: 10.3390/ijms22179359
    [17]
    彭军波, 李兴红, 张玮, 等. 葡萄溃疡病菌外泌蛋白LtGH61A的致病力及基因表达模式 [J]. 中国农业科学, 2019, 52(24):4518−4526.

    PENG J B, LI X H, ZHANG W, et al. Pathogenicity and gene expression pattern of the exocrine protein LtGH61A of grape canker fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518−4526.(in Chinese)
    [18]
    YU C L, LI T, SHI X P, et al. Deletion of endo-β-1, 4-xylanase VmXyl1 impacts the virulence of Valsa mali in apple tree [J]. Frontiers in Plant Science, 2018, 9: 663. doi: 10.3389/fpls.2018.00663
    [19]
    YANG C, LIU R, PANG J H, et al. Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during Magnaporthe oryzae infection in rice [J]. Nature Communications, 2021, 12: 2178. doi: 10.1038/s41467-021-22456-x
    [20]
    FIORIN G L, SANCHÉZ-VALLET A, DE TOLEDO THOMAZELLA D P, et al. Suppression of plant immunity by fungal chitinase-like effectors [J]. Current Biology, 2018, 28(18): 3023−3030.e5. doi: 10.1016/j.cub.2018.07.055
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (654) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return