• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
DENG H Y, QIAN F, ZHOU W M, et al. Growth and Saline-tolerance of Quinoa Seeds and Seedlings under Salt Stress [J]. Fujian Journal of Agricultural Sciences,2023,38(10):1139−1145 doi: 10.19303/j.issn.1008-0384.2023.10.002
Citation: DENG H Y, QIAN F, ZHOU W M, et al. Growth and Saline-tolerance of Quinoa Seeds and Seedlings under Salt Stress [J]. Fujian Journal of Agricultural Sciences,2023,38(10):1139−1145 doi: 10.19303/j.issn.1008-0384.2023.10.002

Growth and Saline-tolerance of Quinoa Seeds and Seedlings under Salt Stress

doi: 10.19303/j.issn.1008-0384.2023.10.002
  • Received Date: 2023-04-21
  • Rev Recd Date: 2023-05-21
  • Available Online: 2023-10-25
  • Publish Date: 2023-10-28
  •   Objective   Germination, growth, and physiology of quinoa seeds and seedlings under salt stress were analyzed.   Method   Temuco Quinoa seeds and potted seedlings were treated with NaCl solutions of different concentrations (i.e., 0, 200, and 450 mmol·L−1). Physiological indexes on seed germination and seedling growth, agronomic traits of mature plants, contents of nutrients in the seeds or seedlings, and spatial-temporal expression of SOD, POD, and BADH in the seedlings, were monitored to determine the effects of the imposed salt stress.   Result   (1) Quinoa seed germination and seedling growth were significantly inhibited by the high NaCl concentration at 450 mmol·L−1. The N-uptake was ill-affected, the Na+/K+ ratio significantly increased, the activities of superoxide dismutase (SOD) and peroxidase (POD) significantly decreased, while malondialdehyde (MDA) content significantly higher than that of control. However, under 200 mmol NaCl·L−1, the quinoa plants grew and developed well. Aside from a declined germination index, the seed vigor index and fresh seedling weight were significantly increased, the content of all nutrients slightly raised, and the SOD and POD activities significantly elevated without a significant difference in MDA over control. (2) Under the salt stress of 200 mmol·L−1 and 450 mmol·L−1, the soluble sugar content increased by 68.06% and 41.67%, and the proline by 237.38% and 189.97%, respectively. As the salt concentration increased, they share a similar trend of firstly increasing then a decline. (3) In response to salt stress, BADH and SOD were more highly expressed in the root tissues than in the stems and leaves, while POD was highest in the leaves and lowest in the roots.   Conclusion   High salt concentration at 450 mmol·L−1 ill-affected the nutrient content in Temuco quinoa seeds, inhibited the germination, and hindered the seedling development. The temporal expression of BADH was more rapid and sensitive to salt stress than those of POD and SOD at either 200 mmol·L−1 or 450 mmol·L−1. Consequently, it could be served as an indicator in screening salt-tolerant quinoa germplasms.
  • loading
  • [1]
    VAN ZELM E, ZHANG Y X, TESTERINK C. Salt tolerance mechanisms of plants [J]. Annual Review of Plant Biology, 2020, 71: 403−433. doi: 10.1146/annurev-arplant-050718-100005
    [2]
    WAQAS M, CHEN Y N, IQBAL H, et al. Synergistic consequences of salinity and potassium deficiency in quinoa: Linking with stomatal patterning, ionic relations and oxidative metabolism [J]. Plant Physiology and Biochemistry, 2021, 159: 17−27. doi: 10.1016/j.plaphy.2020.11.043
    [3]
    徐成龙, 董奕岑, 卢家磊, 等. 我国滨海盐碱地土壤改良及资源化利用研究进展 [J]. 世界林业研究, 2020, 33(6):68−73.

    XU C L, DONG Y C, LU J L, et al. Research progress of soil improvement and soil resources utilization of coastal saline-alkaline land in China [J]. World Forestry Research, 2020, 33(6): 68−73.(in Chinese)
    [4]
    LIN M Y, HAN P P, LI Y Y, et al. Quinoa secondary metabolites and their biological activities or functions [J]. Molecules, 2019, 24(13): 2512. doi: 10.3390/molecules24132512
    [5]
    HUSSAIN M I, FAROOQ M, SYED Q A, et al. Botany, nutritional value, phytochemical composition and biological activities of quinoa [J]. Plants, 2021, 10(11): 2258. doi: 10.3390/plants10112258
    [6]
    任贵兴, 杨修仕, 么杨. 中国藜麦产业现状 [J]. 作物杂志, 2015(5):1−5.

    REN G X, YANG X S, YAO Y. Current situation of quinoa industry in China [J]. Crops, 2015(5): 1−5.(in Chinese)
    [7]
    JACOBSEN S E, MUJICA A, JENSEN C R. The resistance of quinoa (Chenopodium quinoaWilld. ) to adverse abiotic factors [J]. Food Reviews International, 2003, 19(1/2): 99−109.
    [8]
    LÓPEZ-MARQUÉS R L, NØRREVANG A F, ACHE P, et al. Prospects for the accelerated improvement of the resilient crop quinoa [J]. Journal of Experimental Botany, 2020, 71(18): 5333−5347. doi: 10.1093/jxb/eraa285
    [9]
    MA Q, SU C X, DONG C H. Genome-wide transcriptomic and proteomic exploration of molecular regulations in quinoa responses to ethylene and salt stress [J]. Plants, 2021, 10(11): 2281. doi: 10.3390/plants10112281
    [10]
    王志恒, 徐中伟, 周吴艳, 等. 藜麦种子萌发阶段响应干旱和盐胁迫变化的综合评价 [J]. 中国生态农业学报(中英文), 2020, 28(7):1033−1042.

    WANG Z H, XU Z W, ZHOU W Y, et al. Comprehensive evaluation of quinoa seed responses to drought and salt stress during germination [J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 1033−1042.(in Chinese)
    [11]
    李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [12]
    任永峰, 黄琴, 王志敏, 等. 不同化控剂对藜麦农艺性状及产量的影响 [J]. 中国农业大学学报, 2018, 23(8):8−16.

    REN Y F, HUANG Q, WANG Z M, et al. Effects of chemical control on agronomic traits and yield of quinoa [J]. Journal of China Agricultural University, 2018, 23(8): 8−16.(in Chinese)
    [13]
    解卫海, 刘丹, 孙金利, 等. 脱水和高氧压过程中单叶蔓荆叶片细胞膜透性分析 [J]. 林业科学, 2015, 51(6):44−49.

    XIE W H, LIU D, SUN J L, et al. Permeability of cells in leaves of Vitex trifolia var. simplicifolia under stresses of dehydration and high oxygen pressure [J]. Scientia Silvae Sinicae, 2015, 51(6): 44−49.(in Chinese)
    [14]
    杨璐, 依丽米努尔, 朱苗苗, 等. 植物叶片中硫含量测定方法研究 [J]. 应用化工, 2015, 44(3):575−579.

    YANG L, YILIMINUER, ZHU M M, et al. Study on the determination of sulfur content in plant leaves [J]. Applied Chemical Industry, 2015, 44(3): 575−579.(in Chinese)
    [15]
    付尧, 孙玉军. 植物有机碳测定研究进展 [J]. 世界林业研究, 2013, 26(1):24−30.

    FU Y, SUN Y J. A study of the determination of organic carbon of vegetation [J]. World Forestry Research, 2013, 26(1): 24−30.(in Chinese)
    [16]
    常硕, 张延国, 刘广洋, 等. 杜马斯燃烧定氮法和凯氏定氮法在蔬菜粗蛋白质含量检测中的比较 [J]. 中国蔬菜, 2021(6):68−73.

    CHANG S, ZHANG Y G, LIU G Y, et al. Comparative studies on determination of crude protein in common vegetables by Dumas combustion method and Kjeldahl method [J]. China Vegetables, 2021(6): 68−73.(in Chinese)
    [17]
    KOYRO H W, EISA S S. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd [J]. Plant and Soil, 2008, 302(1/2): 79−90.
    [18]
    李丽丽, 姜奇彦, 牛风娟, 等. 藜麦耐盐机制研究进展 [J]. 中国农业科技导报, 2016, 18(2):31−40.

    LI L L, JIANG Q Y, NIU F J, et al. Research progress on salt tolerance mechanisms in quinoa [J]. Journal of Agricultural Science and Technology, 2016, 18(2): 31−40.(in Chinese)
    [19]
    陆敏佳, 蒋玉蓉, 陆国权, 等. 利用SSR标记分析藜麦品种的遗传多样性 [J]. 核农学报, 2015, 29(2):260−269. doi: 10.11869/j.issn.100-8551.2015.02.0260

    LU M J, JIANG Y R, LU G Q, et al. Genetic diversity of quinoa germplasm assessed by SSR markers [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(2): 260−269.(in Chinese) doi: 10.11869/j.issn.100-8551.2015.02.0260
    [20]
    刘文瑜, 杨发荣, 黄杰, 等. NaCl胁迫对藜麦幼苗生长和抗氧化酶活性的影响 [J]. 西北植物学报, 2017, 37(9):1797−1804. doi: 10.7606/j.issn.1000-4025.2017.09.1797

    LIU W Y, YANG F R, HUANG J, et al. Response of seedling growth and the activities of antioxidant enzymes of Chenopodium quinoato salt stress [J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(9): 1797−1804.(in Chinese) doi: 10.7606/j.issn.1000-4025.2017.09.1797
    [21]
    ADOLF V I, JACOBSEN S E, SHABALA S. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.) [J]. Environmental and Experimental Botany, 2013, 92: 43−54. doi: 10.1016/j.envexpbot.2012.07.004
    [22]
    RUFFINO A M C, ROSA M, HILAL M, et al. The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity [J]. Plant and Soil, 2010, 326(1/2): 213−224.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (273) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return