• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 39 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
WU M, HUANG J, SHI T X, et al. CRISPR/Cas9 Technology-generated High-amylose Rice Varieties [J]. Fujian Journal of Agricultural Sciences,2024,39(1):17−24 doi: 10.19303/j.issn.1008-0384.2024.01.003
Citation: WU M, HUANG J, SHI T X, et al. CRISPR/Cas9 Technology-generated High-amylose Rice Varieties [J]. Fujian Journal of Agricultural Sciences,2024,39(1):17−24 doi: 10.19303/j.issn.1008-0384.2024.01.003

CRISPR/Cas9 Technology-generated High-amylose Rice Varieties

doi: 10.19303/j.issn.1008-0384.2024.01.003
  • Received Date: 2023-09-16
  • Rev Recd Date: 2023-12-21
  • Available Online: 2024-01-06
  • Publish Date: 2024-01-28
  •   Objective  A series of new rice germplasms with high content of amylose derived from Zhonghua 11 using the CRISPR/Cas9 technology was generated.   Method   The gene of starch branching enzyme in rice, OsSBE3, was targeted for the genetic editing by CRISPR/Cas9. Homozygous T-DNA-free mutants were verified by PCR with starch content measured.   Result  Ten mutant lines were obtained from the T0 generation. From the T1 generation, 5 homozygous T-DNA-free lines were obtained that included 4 lines, i.e., sbe3-22-6, sbe3-25-3, Sbe3-25-4, and sbe3-25-6, showing significantly increased amylose content and amylose/amylopectin ratio over the wild type.   Conclusion  A series of new rice germplasms with high amylose content was created.
  • loading
  • [1]
    SUN Y W, JIAO G A, LIU Z P, et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes [J]. Frontiers in Plant Science, 2017, 8: 298.
    [2]
    PROSEKOV A Y, IVANOVA S A. Food security: The challenge of the present [J]. Geoforum, 2018, 91: 73−77. doi: 10.1016/j.geoforum.2018.02.030
    [3]
    CHEN L, MAGLIANO D J, ZIMMET P Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives [J]. Nature Reviews Endocrinology, 2012, 8: 228−236. doi: 10.1038/nrendo.2011.183
    [4]
    BHAVADHARINI B, MOHAN V, DEHGHAN M, et al. White rice intake and incident diabetes: A study of 132, 373 participants in 21 countries [J]. Diabetes Care, 2020, 43(11): 2643−2650. doi: 10.2337/dc19-2335
    [5]
    JIANG H X, LIO J, BLANCO M, et al. Resistant-starch formation in high-amylose maize starch during Kernel development [J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 8043−8047. doi: 10.1021/jf101056y
    [6]
    REGINA A, BERBEZY P, KOSAR-HASHEMI B, et al. A genetic strategy generating wheat with very high amylose content [J]. Plant Biotechnology Journal, 2015, 13(9): 1276−1286. doi: 10.1111/pbi.12345
    [7]
    VONK R J, HAGEDOORN R E, DE GRAAFF R, et al. Digestion of so-called resistant starch sources in the human small intestine [J]. The American Journal of Clinical Nutrition, 2000, 72(2): 432−438. doi: 10.1093/ajcn/72.2.432
    [8]
    马先红, 张文露, 张铭鉴. 玉米淀粉的研究现状 [J]. 粮食与油脂, 2019, 32(2):4−6. doi: 10.3969/j.issn.1008-9578.2019.02.002

    MA X H, ZHANG W L, ZHANG M J. Research status of corn starch [J]. Cereals & Oils, 2019, 32(2): 4−6.(in Chinese) doi: 10.3969/j.issn.1008-9578.2019.02.002
    [9]
    BISELLI C, CAVALLUZZO D, PERRINI R, et al. Improvement of marker-based predictability of Apparent Amylose Content in japonica rice through GBSSI allele mining [J]. Rice, 2014, 7(1): 1. doi: 10.1186/1939-8433-7-1
    [10]
    RAHMAN S, BIRD A, REGINA A, et al. Resistant starch in cereals: Exploiting genetic engineering and genetic variation [J]. Journal of Cereal Science, 2007, 46(3): 251−260. doi: 10.1016/j.jcs.2007.05.001
    [11]
    DAINTY S A, KLINGEL S L, PILKEY S E, et al. Resistant starch bagels reduce fasting and postprandial insulin in adults at risk of type 2 Diabetes1 [J]. The Journal of Nutrition, 2016, 146(11): 2252−2259. doi: 10.3945/jn.116.239418
    [12]
    QU J Z, XU S T, ZHANG Z Q, et al. Evolutionary, structural and expression analysis of core genes involved in starch synthesis [J]. Scientific Reports, 2018, 8: 12736. doi: 10.1038/s41598-018-30411-y
    [13]
    WANG Z B, LI W H, QI J C, et al. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents [J]. Journal of Food Science and Technology, 2014, 51(3): 419−429. doi: 10.1007/s13197-011-0520-z
    [14]
    NAKAMURA Y, UTSUMI Y, SAWADA T, et al. Characterization of the reactions of starch branching enzymes from rice endosperm [J]. Plant and Cell Physiology, 2010, 51(5): 776−794. doi: 10.1093/pcp/pcq035
    [15]
    BIRT D F, BOYLSTON T, HENDRICH S, et al. Resistant starch: Promise for improving human health [J]. Advances in Nutrition, 2013, 4(6): 587−601. doi: 10.3945/an.113.004325
    [16]
    CHEN M H, HUANG L F, LI H M, et al. Signal peptide-dependent targeting of a rice α-amylase and cargo proteins to plastids and extracellular compartments of plant cells [J]. Plant Physiology, 2004, 135(3): 1367−1377. doi: 10.1104/pp.104.042184
    [17]
    WANG J, HU P, CHEN Z C, et al. Progress in high-amylose cereal crops through inactivation of starch branching enzymes [J]. Frontiers in Plant Science, 2017, 8: 469.
    [18]
    CARCIOFI M, BLENNOW A, JENSEN S L, et al. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules [J]. BMC Plant Biology, 2012, 12: 223. doi: 10.1186/1471-2229-12-223
    [19]
    SCHÖNHOFEN A, ZHANG X Q, DUBCOVSKY J. Combined mutations in five wheat STARCH BRANCHING ENZYME II genes improve resistant starch but affect grain yield and bread-making quality [J]. Journal of Cereal Science, 2017, 75: 165−174. doi: 10.1016/j.jcs.2017.03.028
    [20]
    SHU X L, JIAO G A, FITZGERALD M A, et al. Starch structure and digestibility of rice high in resistant starch [J]. Starch - Stä rke, 2006, 58(8): 411−417.
    [21]
    BUTARDO V M, FITZGERALD M A, BIRD A R, et al. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing [J]. Journal of Experimental Botany, 2011, 62(14): 4927−4941. doi: 10.1093/jxb/err188
    [22]
    ENDO M, MIKAMI M, TOKI S. Biallelic gene targeting in rice [J]. Plant Physiology, 2016, 170(2): 667−677. doi: 10.1104/pp.15.01663
    [23]
    SATOH H, NISHI A, YAMASHITA K, et al. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm [J]. Plant Physiology, 2003, 133(3): 1111−1121. doi: 10.1104/pp.103.021527
    [24]
    刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展 [J]. 华南农业大学学报, 2019, 40(5):38−49. doi: 10.7671/j.issn.1001-411X.201905058

    LIU Y G, LI G S, ZHANG Y L, et al. Current advances on CRISPR/Cas genome editing technologies in plants [J]. Journal of South China Agricultural University, 2019, 40(5): 38−49.(in Chinese) doi: 10.7671/j.issn.1001-411X.201905058
    [25]
    NISHIMURA A, AICHI I, MATSUOKA M. A protocol for Agrobacterium-mediated transformation in rice [J]. Nature Protocols, 2006, 1: 2796−2802. doi: 10.1038/nprot.2006.469
    [26]
    POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components [J]. Plant Molecular Biology Reporter, 1997, 15(1): 8−15. doi: 10.1007/BF02772108
    [27]
    郭新颖. 利用CRISPR/Cas9技术编辑Wx基因5’UTR区降低水稻直链淀粉含量[D]. 南宁: 广西大学, 2022.

    GUO X Y. Reduction of rice amylose content by editing the 5’UTR of the wx gene via CRISPR/Cas9 technology[D]. Nanning: Guangxi University, 2022. (in Chinese)
    [28]
    牛淑琳, 鞠培娜, 周冠华, 等. 利用CRISPR/Cas9技术编辑OsRR22基因创制耐盐水稻种质资源 [J]. 山东农业科学, 2023, 55(2):30−35.

    NIU S L, JU P N, ZHOU G H, et al. Creation of salt-tolerant rice germplasm by editing OsRR22 gene via CRISPR/Cas9 technique [J]. Shandong Agricultural Sciences, 2023, 55(2): 30−35.(in Chinese)
    [29]
    潘雯丽, 梁倩, 高群玉. 高直链玉米淀粉在食品、食品材料及保健食品中的应用进展 [J]. 食品工业科技, 2022, 43(21):396−404.

    PAN W L, LIANG Q, GAO Q Y. Application of high amylose maize starch in food, food material and health product [J]. Science and Technology of Food Industry, 2022, 43(21): 396−404.(in Chinese)
    [30]
    周小耕. 以CRISPR/CaS9突变淀粉分支酶SBE3和SSⅢ基因创制稻米高抗性淀粉新种质[D]. 南京: 南京农业大学, 2019.

    ZHOU X G. Construction of novel rice germplasm with high level of resistant starch by mutating SBE3 and SSⅢ through CRISPR/Cas9 system[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
    [31]
    BISWAS S, IBARRA O, SHAPHEK M, et al. Increasing the level of resistant starch in ‘Presidio’ rice through multiplex CRISPR–Cas9 gene editing of starch branching enzyme genes [J]. The Plant Genome, 2023, 16(2): e20225. doi: 10.1002/tpg2.20225
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (190) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return