• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 39 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
GAO H, TU H Z, ZHAO Y Y, et al. Research Progress on Biochar Application for Continuous Cropping of TCM Plants [J]. Fujian Journal of Agricultural Sciences,2024,39(1):105−114 doi: 10.19303/j.issn.1008-0384.2024.01.013
Citation: GAO H, TU H Z, ZHAO Y Y, et al. Research Progress on Biochar Application for Continuous Cropping of TCM Plants [J]. Fujian Journal of Agricultural Sciences,2024,39(1):105−114 doi: 10.19303/j.issn.1008-0384.2024.01.013

Research Progress on Biochar Application for Continuous Cropping of TCM Plants

doi: 10.19303/j.issn.1008-0384.2024.01.013
  • Received Date: 2023-06-15
  • Accepted Date: 2023-12-05
  • Rev Recd Date: 2023-11-12
  • Publish Date: 2024-01-28
  • As a major country in the world engaging in large-scale cultivation of traditional Chinese medicine (TCM) plants, China is facing a serious challenge in growth of the industry. Due to malpractices and poor management, undesirable consequences such as productivity decline and quality deterioration, relocation of authentic origins, insufficient resource protection, and uncoordinated material utilization have surfaced. The causes of the ill-effects may not be all clearly identified, nonetheless, rampant continuous cropping is deemed as one of the most urgent targets for correction. A generally alkali material, biochar is commonly applied to amend the soil in question to improve fertility, reduce acidification, and promote growth of the plants cultivated on it. It has been used by farmers in recent years, and the measure could be implemented to mitigate the damaging effects induced by the TCM continuous cropping as well. This article reviewed the benefits of biochar application on soil, such as adjusting the physiochemical properties, microbial community, and allelopathic environment. Some practical treatments for improvements are presented.
  • loading
  • [1]
    吴红淼, 林文雄. 药用植物连作障碍研究评述和发展透视 [J]. 中国生态农业学报(中英文), 2020, 28(6):775−793.

    WU H M, LIN W X. A commentary and development perspective on the consecutive monoculture problems of medicinal plants [J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 775−793. (in Chinese)
    [2]
    ALEMÁN F. Common bean response to tillage intensity and weed control strategies [J]. Agronomy Journal, 2001, 93(3): 556−563. doi: 10.2134/agronj2001.933556x
    [3]
    郭兰萍, 黄璐琦, 蒋有绪, 等. 药用植物栽培种植中的土壤环境恶化及防治策略 [J]. 中国中药杂志, 2006, 31(9):714−717.

    GUO L P, HUANG L Q, JIANG Y X, et al. Soil deterioration during cultivation of medicinal plants and ways to prevent it [J]. China Journal of Chinese Materia Medica, 2006, 31(9): 714−717. (in Chinese)
    [4]
    孙跃春, 林淑芳, 黄璐琦, 等. 药用植物自毒作用及调控措施 [J]. 中国中药杂志, 2011, 36(4):387−390.

    SUN Y C, LIN S F, HUANG L Q, et al. Review: Autotoxicity in medicinal plants and means to overcome [J]. China Journal of Chinese Materia Medica, 2011, 36(4): 387−390. (in Chinese)
    [5]
    孙雪婷, 龙光强, 张广辉, 等. 基于三七连作障碍的土壤理化性状及酶活性研究 [J]. 生态环境学报, 2015, 24(3):409−417.

    SUN X T, LONG G Q, ZHANG G H, et al. Properties of soil physical-chemistry and activities of soil enzymes in context of continuous cropping obstacles forPanax notoginseng [J]. Ecology and Environmental Sciences, 2015, 24(3): 409−417. (in Chinese)
    [6]
    张子龙, 王文全, 杨建忠, 等. 三七连作土壤对其种子萌发及幼苗生长的影响 [J]. 土壤, 2010, 42(6):1009−1014.

    ZHANG Z L, WANG W Q, YANG J Z, et al. Effects of continuous Panax notoginseng cropping soil on P. notoginseng seed germination and seedling growth [J]. Soils, 2010, 42(6): 1009−1014. (in Chinese)
    [7]
    杨莉, 刘宇航, 郝佳, 等. 生物质炭对人参连作土壤微生物组成及功能的影响 [J]. 华南农业大学学报, 2022, 43(1):28−36. doi: 10.7671/j.issn.1001-411X.202105001

    YANG L, LIU Y H, HAO J, et al. Effect of biochar on microbial composition and function in continuous cropping ginseng soil [J]. Journal of South China Agricultural University, 2022, 43(1): 28−36. (in Chinese) doi: 10.7671/j.issn.1001-411X.202105001
    [8]
    焦艳阳, 林煜, 蔡昭莹, 等. 不同技术迭代对太子参连作障碍的消减效果及作用机制 [J]. 应用生态学报, 2021, 32(7):2485−2495.

    JIAO Y, LIN Y, CAI Z Y, et al. Effects of different technical substitutions on reducing replant disease of Radix pseudostella-riae and the underlying mechanism [J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2485−2495. (in Chinese)
    [9]
    侯慧, 董坤, 杨智仙, 等. 连作障碍发生机理研究进展 [J]. 土壤, 2016, 48(6):1068−1076.

    HOU H, DONG K, YANG Z X, et al. Advance in mechanism of continuous cropping obstacle [J]. Soils, 2016, 48(6): 1068−1076. (in Chinese)
    [10]
    何银生. 川党参连作障碍机制及修复研究[D]. 武汉: 华中农业大学, 2019: 36−37

    HE Y S. Studies on the mechanism of continuous cropping obstacle of condonopsis Tangshen oliv. and its remediation[D]. Wuhan: Huazhong Agricultural University, 2019: 36−37. (in Chinese)
    [11]
    GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands [J]. Science, 2010, 327(5968): 1008−1010. doi: 10.1126/science.1182570
    [12]
    石雷磊. 白术连作障碍发生原因分析及调控方法研究[D]. 杭州: 浙江中医药大学, 2018: 43−46.

    SHI L L. Study on the causes and control methods of continuous cropping barrier in Atractylodes macrocephala[D]. Hangzhou: Zhejiang Chinese Medical University, 2018: 43−46. (in Chinese)
    [13]
    沈彦龙, 程立业, 孟祥茹, 等. 人参连作土壤对不同生育期人参生长发育及抗氧化系统的影响 [J]. 应用化学, 2023, 40(1):109−115.

    SHEN Y L, CHENG L Y, MENG X R, et al. Effects of ginseng continuous soil crop on growth development and antioxidant system of ginseng at different fertility stages [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 109−115.
    [14]
    LI X G, DING C F, ZHANG T L, et al. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing [J]. Soil Biology and Biochemistry, 2014, 72: 11−18. doi: 10.1016/j.soilbio.2014.01.019
    [15]
    吴凤芝, 王学征. 设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系 [J]. 中国农业科学, 2007, 40(10):2274−2280.

    WU F Z, WANG X Z. Effect of monocropping and rotation on soil microbial community diversity and cucumber yield, quality under protected cultivation [J]. Scientia Agricultura Sinica, 2007, 40(10): 2274−2280. (in Chinese)
    [16]
    蔡祖聪, 黄新琦. 土壤学不应忽视对作物土传病原微生物的研究 [J]. 土壤学报, 2016, 53(2):305−310.

    CAI Z C, HUANG X Q. Soil-borne pathogens should not be ignored by soil science [J]. Acta Pedologica Sinica, 2016, 53(2): 305−310. (in Chinese)
    [17]
    ROUSK J, BROOKES P C, BÅÅTH E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization [J]. Applied and Environmental Microbiology, 2009, 75(6): 1589−1596. doi: 10.1128/AEM.02775-08
    [18]
    KURTZWEIL N, GRAU C, MACGUIDWIN A, et al. Soil pH in relation to brown stem rot and soybean cyst nematode[J]. Madison: University of Wisconsin Press, 2002: 177 − 185.
    [19]
    WU L K, CHEN J, KHAN M U, et al. Rhizosphere fungal community dynamics associated with Rehmannia glutinosa replant disease in a consecutive monoculture regime [J]. Phytopathology, 2018, 108(12): 1493−1500. doi: 10.1094/PHYTO-02-18-0038-R
    [20]
    WU L K, CHEN J, XIAO Z G, et al. Barcoded pyrosequencing reveals a shift in the bacterial community in the rhizosphere and rhizoplane of Rehmannia glutinosa under consecutive monoculture [J]. International Journal of Molecular Sciences, 2018, 19(3): 850. doi: 10.3390/ijms19030850
    [21]
    WU H M, WU L K, WANG J Y, et al. Mixed phenolic acids mediated proliferation of pathogens Talaromyces helicus and Kosakonia sacchari in continuously monocultured Radix pseudostellariae rhizosphere soil [J]. Frontiers in Microbiology, 2016, 7: 335.
    [22]
    WU H M, QIN X J, WANG J Y, et al. Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes[J]. Agriculture, Ecosystems & Environment, 2019, 270/271: 19 − 31.
    [23]
    WU H M, WU H M, QIN X J, et al. Replanting disease alters the faunal community composition and diversity in the rhizosphere soil of Radix pseudostellariae[J]. Agriculture, Ecosystems & Environment, 2021, 310: 107304.
    [24]
    田瑶. 无花果提取物对几种药用植物种子萌发和幼苗生长的影响[D]. 哈尔滨: 东北林业大学, 2021.

    TIAN Y. Effects of figs extract on seed germination and seedling growth of several medicinal plants[D]. Harbin: Northeast Forestry University, 2021. (in Chinese)
    [25]
    陆茜, 张金池, 孟苗婧. 长期连栽杨树林根际土壤自毒作用的生物测定 [J]. 生态学报, 2017, 37(12):4053−4060.

    LU Q, ZHANG J C, MENG M J. Bioassay for inhibitory autotoxicity of rhizosphere soil under long-term successive monoculture poplar plantations [J]. Acta Ecologica Sinica, 2017, 37(12): 4053−4060. (in Chinese)
    [26]
    吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望 [J]. 植物生态学报, 2014, 38(3):298−310. doi: 10.3724/SP.J.1258.2014.00027

    WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates [J]. Chinese Journal of Plant Ecology, 2014, 38(3): 298−310. (in Chinese) doi: 10.3724/SP.J.1258.2014.00027
    [27]
    LI X G, DING C F, HUA K, et al. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy [J]. Soil Biology and Biochemistry, 2014, 78: 149−159. doi: 10.1016/j.soilbio.2014.07.019
    [28]
    LIU J K, YAN Z Q, LI X Z, et al. Characterization of allelochemicals from the rhizosphere soil of Pinellia ternate (Thnub. ) and their inhibition activity on protective enzymes [J]. Applied Soil Ecology, 2018, 125: 301−306. doi: 10.1016/j.apsoil.2018.01.001
    [29]
    ZHENG F, CHEN L, GAO J M, et al. Identification of autotoxic compounds from Atractylodes macrocephala Koidz and preliminary investigations of their influences on immune system [J]. Journal of Plant Physiology, 2018, 230: 33−39. doi: 10.1016/j.jplph.2018.08.006
    [30]
    ZHANG B, WESTON P A, GU L, et al. Identification of phytotoxic metabolites released from Rehmannia glutinosa suggest their importance in the formation of its replant problem [J]. Plant and Soil, 2019, 441(1): 439−454.
    [31]
    唐成林, 罗夫来, 赵致, 等. 半夏植株腐解液对8种作物的化感作用及化感物质成分分析 [J]. 核农学报, 2018, 32(8):1639−1648.

    TANG C L, LUO F L, ZHAO Z, et al. The allelopathy of Pinellia ternata decomposed liquid on 8 crops and composition of allelochemicals [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(8): 1639−1648. (in Chinese)
    [32]
    陈福慧, 申乃坤, 姜明国, 等. 作物重茬连作障碍中自毒物质的研究进展 [J]. 中国农业科技导报, 2022, 24(10):125−132.

    CHEN F H, SHEN N K, JIANG M G, et al. Research progress of autotoxic secretions in crops replant successive cropping obstacles [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 125−132. (in Chinese)
    [33]
    黄钰芳, 张恩和, 张新慧, 等. 兰州百合连作土壤水浸液自毒作用研究 [J]. 西北农林科技大学学报(自然科学版), 2020, 48(7):84−93.

    HUANG Y F, ZHANG E H, ZHANG X H, et al. Autotoxicity of water extracts from continuous cropping soil of Lilium davidii var. unicolor salisb [J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(7): 84−93. (in Chinese)
    [34]
    原增艳. 地黄自毒物质的分离与鉴定[D]. 郑州: 河南农业大学, 2010.

    YUAN Z Y. Isolation and identification ofautotoxicity substances from Rehmannia glutinosa libosch[D]. Zhengzhou: Henan Agricultural University, 2010. (in Chinese)
    [35]
    张秋菊, 张爱华, 雷锋杰, 等. 人参皂苷粗提液对西洋参早期生长的化感效应 [J]. 西北植物学报, 2011, 31(3):576−582.

    ZHANG Q J, ZHANG A H, LEI F J, et al. Allelopathic effect of crude ginsenoside extracts on early growth of Panax quinquefolium L [J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(3): 576−582. (in Chinese)
    [36]
    焦晓林, 毕晓宝, 高微微. p-香豆酸对西洋参的化感作用及生理机制 [J]. 生态学报, 2015, 35(9):3006−3013.

    JIAO X L, BI X B, GAO W W. Allelopathic effect of p-coumaric acid on American ginseng and its physiological mechanism [J]. Acta Ecologica Sinica, 2015, 35(9): 3006−3013. (in Chinese)
    [37]
    GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiology and Biochemistry, 2010, 48(12): 909−930. doi: 10.1016/j.plaphy.2010.08.016
    [38]
    MITTLER R. Oxidative stress, antioxidants and stress tolerance [J]. Trends in Plant Science, 2002, 7(9): 405−410. doi: 10.1016/S1360-1385(02)02312-9
    [39]
    邓茳明, 熊格生, 袁小玲, 等. 棉花不同耐高温品系的SOD、POD、CAT活性和MDA含量差异及其对盛花期高温胁迫的响应 [J]. 棉花学报, 2010, 22(3):242−247. doi: 10.3969/j.issn.1002-7807.2010.03.009

    DENG J M, XIONG G S, YUAN X L, et al. Differences in SOD, POD, CAT activities and MDA content and their responses to high temperature stress at peak flowering stage in cotton lines with different tolerance to high temperature [J]. Cotton Science, 2010, 22(3): 242−247. (in Chinese) doi: 10.3969/j.issn.1002-7807.2010.03.009
    [40]
    张重义, 林文雄. 药用植物的化感自毒作用与连作障碍 [J]. 中国生态农业学报, 2009, 17(1):189−196. doi: 10.3724/SP.J.1011.2009.00189

    ZHANG Z Y, LIN W X. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants [J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 189−196. (in Chinese) doi: 10.3724/SP.J.1011.2009.00189
    [41]
    张重义, 尹文佳, 李娟, 等. 地黄连作的生理生态特性 [J]. 植物生态学报, 2010, 34(5):547−554. doi: 10.3773/j.issn.1005-264x.2010.05.008

    ZHANG Z Y, YIN W J, LI J, et al. Physio-ecological properties of continuous cropping Rehmannia glutinosa [J]. Chinese Journal of Plant Ecology, 2010, 34(5): 547−554. (in Chinese) doi: 10.3773/j.issn.1005-264x.2010.05.008
    [42]
    唐堃, 李明, 董闪, 等. 广藿香根际土壤水浸液对其扦插苗的化感自毒作用 [J]. 中药材, 2014, 37(6):935−939.

    TANG K, LI M, DONG S, et al. Allelopathy autotoxicity effects of aquatic extracts from rhizospheric soil on rooting and growth of stem cuttings in Pogostemon cablin [J]. Journal of Chinese Medicinal Materials, 2014, 37(6): 935−939. (in Chinese)
    [43]
    孙建财, 周丹丹, 王薇, 等. 生物炭改性及其对污染物吸附与降解行为的研究进展 [J]. 环境化学, 2021, 40(5):1503−1513. doi: 10.7524/j.issn.0254-6108.2020102106

    SUN J C, ZHOU D D, WANG W, et al. Research progress on modification of biochar and its adsorption and degradation behavior [J]. Environmental Chemistry, 2021, 40(5): 1503−1513. (in Chinese) doi: 10.7524/j.issn.0254-6108.2020102106
    [44]
    YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol [J]. Soil Use and Management, 2011, 27(1): 110−115. doi: 10.1111/j.1475-2743.2010.00317.x
    [45]
    戴静, 刘阳生. 生物炭的性质及其在土壤环境中应用的研究进展 [J]. 土壤通报, 2013, 44(6):1520−1525.

    DAI J, LIU Y S. Review of research on the properties of biochar and its applications in soil [J]. Chinese Journal of Soil Science, 2013, 44(6): 1520−1525. (in Chinese)
    [46]
    BLANCO-CANQUI H. Biochar and soil physical properties [J]. Soil Science Society of America Journal, 2017, 81(4): 687−711. doi: 10.2136/sssaj2017.01.0017
    [47]
    SINGH B, SINGH B P, COWIE A L. Characterisation and evaluation of biochars for their application as a soil amendment [J]. Soil Research, 2010, 48(7): 516. doi: 10.1071/SR10058
    [48]
    ENNIS C J, EVANS A G, ISLAM M, et al. Biochar: Carbon sequestration, land remediation, and impacts on soil microbiology [J]. Critical Reviews in Environmental Science and Technology, 2012, 42(22): 2311−2364. doi: 10.1080/10643389.2011.574115
    [49]
    孔丝纺, 姚兴成, 张江勇, 等. 生物质炭的特性及其应用的研究进展 [J]. 生态环境学报, 2015, 24(4):716−723.

    KONG S F, YAO X C, ZHANG J Y, et al. Review of characteristics of biochar and research progress of its applications [J]. Ecology and Environmental Sciences, 2015, 24(4): 716−723. (in Chinese)
    [50]
    徐敏, 伍钧, 张小洪, 等. 生物炭施用的固碳减排潜力及农田效应 [J]. 生态学报, 2018, 38(2):393−404.

    XU M, WU J, ZHANG X H, et al. Impact of biochar application on carbon sequestration, soil fertility and crop productivity [J]. Acta Ecologica Sinica, 2018, 38(2): 393−404. (in Chinese)
    [51]
    周桂玉, 窦森, 刘世杰. 生物质炭结构性质及其对土壤有效养分和腐殖质组成的影响 [J]. 农业环境科学学报, 2011, 30(10):2075−2080.

    ZHOU G Y, DOU S, LIU S J. The structural characteristics of biochar and its effects on soil available nutrients and humus composition [J]. Journal of Agro-Environment Science, 2011, 30(10): 2075−2080. (in Chinese)
    [52]
    江明华, 程建中, 李心清, 等. 生物炭对农田土壤CO2排放的影响研究进展 [J]. 地球与环境, 2021, 49(6):726−736.

    JIANG M H, CHENG J Z, LI X Q, et al. The effect of biochar on the farmland soil CO2 emission: A review [J]. Earth and Environment, 2021, 49(6): 726−736. (in Chinese)
    [53]
    谢祖彬, 刘琦, 许燕萍, 等. 生物炭研究进展及其研究方向 [J]. 土壤, 2011, 43(6):857−861.

    XIE Z B, LIU Q, XU Y P, et al. Advances and perspectives of biochar research [J]. Soils, 2011, 43(6): 857−861. (in Chinese)
    [54]
    FOX A, GAHAN J, IKOYI I, et al. Miscanthus biochar promotes growth of spring barley and shifts bacterial community structures including phosphorus and sulfur mobilizing bacteria [J]. Pedobiologia, 2016, 59(4): 195−202. doi: 10.1016/j.pedobi.2016.07.003
    [55]
    袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型、理化性质及其研究展望 [J]. 植物营养与肥料学报, 2016, 22(5):1402−1417. doi: 10.11674/zwyf.14539

    YUAN S, ZHAO L X, MENG H B, et al. The main types of biochar and their properties and expectative researches [J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1402−1417. (in Chinese) doi: 10.11674/zwyf.14539
    [56]
    李文文, 李梦蕊, 赵广超. 磁性竹基炭对Pb2+、Cd2+与Cu2+的吸附机理研究 [J]. 环境科学学报, 2014, 34(4):938−943.

    LI W W, LI M R, ZHAO G C. Adsorption mechanism of Pb2+, Cd2+ and Cu2+ onto bamboo-based magnetic carbon [J]. Acta Scientiae Circumstantiae, 2014, 34(4): 938−943. (in Chinese)
    [57]
    刘晶晶, 杨兴, 陆扣萍, 等. 生物质炭对土壤重金属形态转化及其有效性的影响 [J]. 环境科学学报, 2015, 35(11):3679−3687.

    LIU J J, YANG X, LU K P, et al. Effect of bamboo and rice straw biochars on the transformation and bioavailability of heavy metals in soil [J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3679−3687. (in Chinese)
    [58]
    ZHANG X K, WANG H L, HE L Z, et al. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants [J]. Environmental Science and Pollution Research, 2013, 20(12): 8472−8483. doi: 10.1007/s11356-013-1659-0
    [59]
    王瑞峰, 赵立欣, 沈玉君, 等. 生物炭制备及其对土壤理化性质影响的研究进展 [J]. 中国农业科技导报, 2015, 17(2):126−133.

    WANG R F, ZHAO L X, SHEN Y J, et al. Research progress on preparing biochar and its effect on soil physio-chemical properties [J]. Journal of Agricultural Science and Technology, 2015, 17(2): 126−133. (in Chinese)
    [60]
    ESMAEELNEJAD L, SHORAFA M, GORJI M, et al. Impacts of woody biochar particle size on porosity and hydraulic conductivity of biochar-soil mixtures: An incubation study [J]. Communications in Soil Science and Plant Analysis, 2017, 48(14): 1710−1718. doi: 10.1080/00103624.2017.1383414
    [61]
    戴中民. 生物炭对酸化土壤的改良效应与生物化学机理研究[D]. 杭州: 浙江大学, 2017: 10-76

    DAI Z M. The effects of biochar on acid soil improvement and the related biochemical mechanisms[D]. Hangzhou: Zhejiang University, 2017: 10-76. (in Chinese)
    [62]
    ZHU X M, CHEN B L, ZHU L Z, et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review [J]. Environmental Pollution, 2017, 227: 98−115. doi: 10.1016/j.envpol.2017.04.032
    [63]
    张千丰, 王光华. 生物炭理化性质及对土壤改良效果的研究进展 [J]. 土壤与作物, 2012, 1(4):219−226.

    ZHANG Q F, WANG G H. Research progress of physiochemical properties of biochar and its effects As soil amendments [J]. Soil and Crop, 2012, 1(4): 219−226. (in Chinese)
    [64]
    李明, 李忠佩, 刘明, 等. 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响 [J]. 中国农业科学, 2015, 48(7):1361−1369.

    LI M, LI Z P, LIU M, et al. Effects of different straw biochar on nutrient and microbial community structure of a red paddy soil [J]. Scientia Agricultura Sinica, 2015, 48(7): 1361−1369. (in Chinese)
    [65]
    YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures [J]. Bioresource Technology, 2011, 102(3): 3488−3497. doi: 10.1016/j.biortech.2010.11.018
    [66]
    UCHIMIYA M, WARTELLE L H, KLASSON K T, et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil [J]. Journal of Agricultural and Food Chemistry, 2011, 59(6): 2501−2510. doi: 10.1021/jf104206c
    [67]
    陈斐杰, 夏会娟, 刘福德, 等. 生物质炭特性及其对土壤性质的影响与作用机制 [J]. 环境工程技术学报, 2022, 12(1):161−172.

    CHEN F J, XIA H J, LIU F D, et al. Characteristics of biochar and its effects and mechanism on soil properties [J]. Journal of Environmental Engineering Technology, 2022, 12(1): 161−172. (in Chinese)
    [68]
    SPOKAS K A, CANTRELL K B, NOVAK J M, et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration [J]. Journal of Environmental Quality, 2012, 41(4): 973−989. doi: 10.2134/jeq2011.0069
    [69]
    刘玉学, 刘微, 吴伟祥, 等. 土壤生物质炭环境行为与环境效应 [J]. 应用生态学报, 2009, 20(4):977−982.

    LIU Y X, LIU W, WU W X, et al. Environmental behavior and effect of biomass-derived black carbon in soil: A review [J]. Chinese Journal of Applied Ecology, 2009, 20(4): 977−982. (in Chinese)
    [70]
    何逸婷, Marios Drosos, 孙嘉, 等. 不同原料、热解温度对生物质炭化学性质及结构组成的影响 [J]. 南京农业大学学报, 2023, 46(4):718−726. doi: 10.7685/jnau.202204013

    HE Y T, MARIOS D, SUN J, et al. Effects of feedstock and pyrolysis temperature on chemical properties and structural composition of biochar [J]. Journal of Nanjing Agricultural University, 2023, 46(4): 718−726. (in Chinese) doi: 10.7685/jnau.202204013
    [71]
    柯贤林, 恽壮志, 刘铭龙, 等. 不同来源生物质废弃物热解炭化农业应用潜力分析: 生物质炭产率、性质及促生效应 [J]. 植物营养与肥料学报, 2021, 27(7):1113−1128. doi: 10.11674/zwyf.20583

    KE X L, YUN Z Z, LIU M L, et al. Potential of pyrolysis for agricultural application of different biowastes: Biochar yield, properties and their crop growth effects [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1113−1128. (in Chinese) doi: 10.11674/zwyf.20583
    [72]
    周丽靖, 王亚军, 谢忠奎, 等. 生物炭对兰州百合(Lilium davidii var. unicolor)连作土壤的改良作用 [J]. 中国沙漠, 2019, 39(2):137−142.

    ZHOU L J, WANG Y J, XIE Z K, et al. Improvement Effect of Biochar on the Degraded Soil of Lanzhou Lily Field [J]. Journal of Desert Research, 2019, 39(2): 137−142. (in Chinese)
    [73]
    郭平, 王观竹, 许梦, 等. 不同热解温度下生物质废弃物制备的生物质炭组成及结构特征 [J]. 吉林大学学报(理学版), 2014, 52(4):855−860.

    GUO P, WANG G Z, XU M, et al. Structure and composition characteristics of biochars derived from biomass wastes at different pyrolysis temperatures [J]. Journal of Jilin University (Science Edition), 2014, 52(4): 855−860. (in Chinese)
    [74]
    简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响 [J]. 环境科学学报, 2016, 36(5):1757−1765.

    JIAN M F, GAO K F, YU H P. Effects of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw [J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757−1765. (in Chinese)
    [75]
    赵海岚, 李冰, 王昌全, 等. 两种生物质炭对酸性紫色土腐殖质组成的影响 [J]. 中国生态农业学报(中英文), 2020, 28(12):1949−1957.

    ZHAO H L, LI B, WANG C Q, et al. The effects of biochars on humus composition in acidic purplish soil [J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1949−1957. (in Chinese)
    [76]
    张继宁, 周胜, 孙会峰, 等. 生物质炭在我国蔬菜地应用的研究现状与展望 [J]. 农业现代化研究, 2018, 39(4):543−550.

    ZHANG J N, ZHOU S, SUN H F, et al. Research progress and prospects on the biochar’s application in Chinese vegetable field [J]. Research of Agricultural Modernization, 2018, 39(4): 543−550. (in Chinese)
    [77]
    罗煜, 赵立欣, 孟海波, 等. 不同温度下热裂解芒草生物质炭的理化特征分析 [J]. 农业工程学报, 2013, 29(13):208−217. doi: 10.3969/j.issn.1002-6819.2013.13.027

    LUO Y, ZHAO L X, MENG H B, et al. Physio-chemical characterization of biochars pyrolyzed from miscanthus under two different temperatures [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 208−217. (in Chinese) doi: 10.3969/j.issn.1002-6819.2013.13.027
    [78]
    梁桓, 索全义, 侯建伟, 等. 不同炭化温度下玉米秸秆和沙蒿生物炭的结构特征及化学特性 [J]. 土壤, 2015, 47(5):886−891.

    LIANG H, SUO Q Y, HOU J W, et al. The structure characteristics and chemical properties of maize straw biochar and Artemisia ordosica biochar prepared at different carbonization temperatures [J]. Soils, 2015, 47(5): 886−891. (in Chinese)
    [79]
    TAN Z X, LIN C S K, JI X Y, et al. Returning biochar to fields: A review [J]. Applied Soil Ecology, 2017, 116: 1−11. doi: 10.1016/j.apsoil.2017.03.017
    [80]
    程国淡, 黄青, 张凯松. 热解温度和时间对生物干化污泥生物炭性质的影响 [J]. 环境工程学报, 2013, 7(3):1133−1138.

    CHENG G D, HUANG Q, ZHANG K S. Effect of temperature and duration of pyrolysis on properties of bio-dried sludge biochar [J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 1133−1138. (in Chinese)
    [81]
    ROWELL D L, WILD A. Causes of soil acidification: A summary [J]. Soil Use and Management, 1985, 1(1): 32−33. doi: 10.1111/j.1475-2743.1985.tb00651.x
    [82]
    TEUTSCHEROVA N, LOJKA B, HOUŠKA J, et al. Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils [J]. European Journal of Soil Biology, 2018, 88: 15−26. doi: 10.1016/j.ejsobi.2018.06.002
    [83]
    KLOSS S, ZEHETNER F, WIMMER B, et al. Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions [J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1): 3−15. doi: 10.1002/jpln.201200282
    [84]
    袁金华, 徐仁扣, 俄胜哲, 等. 生物质炭中盐基离子存在形态及其与改良酸性土壤的关系 [J]. 土壤, 2019, 51(1):75−82.

    YUAN J H, XU R K, E S Z, et al. Forms of base cations in biochars and their roles in acid soil amelioration [J]. Soils, 2019, 51(1): 75−82. (in Chinese)
    [85]
    WANG G J, XU Z W. The effects of biochar on germination and growth of wheat in different saline-alkali soil [J]. Asian Agricultural Research, 2013, 05: 116−119.
    [86]
    唐汉萌. 微生物菌剂和生物炭对半夏产量、品质及土壤微生态的影响[D]. 武汉: 华中农业大学, 2019: 53-61.

    TANG H M. Effects of microbial fertilizer and biochar applications on the yield and quality of Pinellia ternata and soil microecology[D]. Wuhan: Huazhong Agricultural University, 2019: 53-61. (in Chinese)
    [87]
    杨莉, 文子伟, 付婧, 等. 生物质炭对连作参地人参种苗与土壤质量的影响 [J]. 中药材, 2020, 43(4):791−796.

    YANG L, WEN Z W, FU J, et al. Effect of biochar on seedling and soil quality of continuous cropping Panax ginseng [J]. Journal of Central University of Finance & Economics, 2020, 43(4): 791−796. (in Chinese)
    [88]
    王昆艳, 官会林, 赵林艳, 等. 稻壳炭对三七连作土壤理化性质和细菌群落结构的影响 [J]. 西南农业学报, 2022, 35(9):2107−2113.

    WANG K Y, GUAN H L, ZHAO L Y, et al. Effects of rice husk biochar on soil physicochemical properties and bacterial community structure of Panax notoginseng under continuous cropping [J]. Southwest China Journal of Agricultural Sciences, 2022, 35(9): 2107−2113. (in Chinese)
    [89]
    ROUSK J, BÅÅTH E, BROOKES P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. The ISME Journal, 2010, 4(10): 1340−1351. doi: 10.1038/ismej.2010.58
    [90]
    ELAD Y, DAVID D R, HAREL Y M, et al. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent [J]. Phytopathology, 2010, 100(9): 913−921. doi: 10.1094/PHYTO-100-9-0913
    [91]
    饶霜, 卢阳, 黄飞, 等. 生物炭对土壤微生物的影响研究进展 [J]. 生态与农村环境学报, 2016, 32(1):53−59.

    RAO S, LU Y, HUANG F, et al. A review of researches on effects of biochars on soil microorganisms [J]. Journal of Ecology and Rural Environment, 2016, 32(1): 53−59. (in Chinese)
    [92]
    周之栋, 卜晓莉, 吴永波, 等. 生物炭对土壤微生物特性影响的研究进展 [J]. 南京林业大学学报(自然科学版), 2016, 40(6):1−8.

    ZHOU Z D, BU X L, WU Y B, et al. Research advances in biochar effects on soil microbial properties [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(6): 1−8. (in Chinese)
    [93]
    杨莉, 勾颖, 文子伟, 等. 生物质炭对连作参地土壤肥力及微生物特性的影响 [J]. 核农学报, 2022, 36(6):1244−1253. doi: 10.11869/j.issn.100-8551.2022.06.1244

    YANG L, GOU Y, WEN Z W, et al. Effect of biochar on soil fertility and microbial properties in continuous cropping ginseng field [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(6): 1244−1253. (in Chinese) doi: 10.11869/j.issn.100-8551.2022.06.1244
    [94]
    ANDERSON C R, CONDRON L M, CLOUGH T J, et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus [J]. Pedobiologia, 2011, 54(5/6): 309−320.
    [95]
    PEAKE L R, REID B J, TANG X Y. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils [J]. Geoderma, 2014, 235/236: 182−190. doi: 10.1016/j.geoderma.2014.07.002
    [96]
    BUTNAN S, DEENIK J L, TOOMSAN B, et al. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy [J]. Geoderma, 2015, 237/238: 105−116. doi: 10.1016/j.geoderma.2014.08.010
    [97]
    PARANAVITHANA G N, KAWAMOTO K, INOUE Y, et al. Adsorption of Cd2+ and Pb2+ onto coconut shell biochar and biochar-mixed soil [J]. Environmental Earth Sciences, 2016, 75(6): 484. doi: 10.1007/s12665-015-5167-z
    [98]
    颜钰, 王子莹, 金洁, 等. 不同生物质来源和热解温度条件下制备的生物炭对菲的吸附行为 [J]. 农业环境科学学报, 2014, 33(9):1810−1816.

    YAN Y, WANG Z Y, JIN J, et al. Phenanthrene adsorption on biochars produced from different biomass materials at two temperatures [J]. Journal of Agro-Environment Science, 2014, 33(9): 1810−1816. (in Chinese)
    [99]
    刘丽珠, 范如芹, 卢信, 等. 农业废弃物生物质炭在设施栽培中应用的研究进展 [J]. 江苏农业学报, 2016, 32(6):1434−1440. doi: 10.3969/j.issn.1000-4440.2016.06.037

    LIU L Z, FAN R Q, LU X, et al. Research progress in application of biochar derived from agricultural waste in facility cultivation [J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(6): 1434−1440. (in Chinese) doi: 10.3969/j.issn.1000-4440.2016.06.037
    [100]
    DE LA ROSA J M, PANEQUE M, HILBER I, et al. Assessment of polycyclic aromatic hydrocarbons in biochar and biochar-amended agricultural soil from Southern Spain [J]. Journal of Soils and Sediments, 2016, 16(2): 557−565. doi: 10.1007/s11368-015-1250-z
    [101]
    ELMER W H, PIGNATELLO J J. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of Asparagus in replant soils [J]. Plant Disease, 2011, 95(8): 960−966. doi: 10.1094/PDIS-10-10-0741
    [102]
    WANG Y F, PAN F B, WANG G S, et al. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions [J]. Scientia Horticulturae, 2014, 175: 9−15. doi: 10.1016/j.scienta.2014.05.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (44) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return