Abstract:
Objective To investigate the impacts of AM fungi on the growth and secondary metabolism of Taxus chinensis seedlings, to discover the symbiotic relationship between Taxus chinensis and AM fungi, and to offer a scientific foundation for Taxus chinensis planting and use.
Method Taxus chinensis seedlings were used as materials, and the roots were inoculated with the arbuscular mycorrhizal fungi (AMF) Rhizophagus intraradices and Funneliformis mosseae during the potting test, as well as a mixture of the two strains, and the inoculation was timed to coincide with planting in this experiment. The effects of AMF on plant growth markers as seedling height, primary root length, ground diameter, soil physicochemical qualities, and secondary metabolism paclitaxel content were investigated in Taxus chinensis seedlings.
Result The results showed that: (1) AMF inoculation could significantly promote the growth of plant height, ground diameter, root length, and number of primary branches of Taxus chinensis seedlings, among which the inoculation of R. intraradices and F. mosseae reached a significant level of growth of plant height and root length, and the inoculation of R. intraradices had the most significant effect on the growth of ground diameter, and the inoculation of F. mosseae had the best influence on the increase of the number of first-order branches. (2) The growth indexes of AMF showed significant correlation with soil physicochemical properties such as soil quick-acting phosphorus content, soil alkaline dissolved nitrogen , and soil quick-acting potassium content. The infestation rate showed a significant negative correlation with the quick-acting phosphorus (p<0.05), and other indexes such as alkaline dissolved nitrogen , quick-acting potassium , and growth indexes all showed a significant correlation.(3) Inoculation with AMF might greatly increase the content of paclitaxel, with R. intraradices having the strongest effect.
Conclusion By analyzing the impacts of several AM fungi on Taxus chinensis growth and secondary metabolism during the seedling stage, it was discovered that the symbiotic pattern of Rhizophagus intraradices and Taxus chinensis could better promote growth and accumulation of secondary metabolism products.