• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

基于豆渣为氮源的红法夫酵母产虾青素的发酵条件优化

Optimization of Astaxanthin-producing Fermentation by Phaffia rhodozyma using Okara as Nitrogen Source

  • 摘要:
    目的 研究以豆渣为氮源进行红法夫酵母产虾青素的可行性,并进行发酵工艺优化,为替代传统的红法夫酵母生产虾青素过程中通常使用的蛋白胨和酵母粉等高成本氮源、降低虾青素生产成本提供参考。
    方法 以豆渣为有机氮源,分析碳源、前体物质、其他氮源、维生素和无机盐等对虾青素产量的影响,选取(NH4)2SO4、维生素E、葡萄糖、蔗糖4个影响因子进行发酵工艺的响应面优化。
    结果 以湿豆渣为氮源时,葡萄糖是红法夫酵母产虾青素的最佳碳源,葡萄糖与蔗糖复合可促进虾青素增产,KCl、KNO3、K2HPO4等钾盐物质,(NH4)2SO4、VB2、VE、玉米黄素等均可显著促进虾青素的产量。对增产最优的4个因素(葡萄糖、蔗糖、K2SO4 和维生素E)进行响应面优化,获得产虾青素的最佳培养基配方为:湿豆渣 10%、K2SO4 0.22%、维生素E 0.6%、葡萄糖 1.08%、蔗糖1.50%,虾青素产量实测值为32.46 mg·L−1,是YM培养基产量的2.23倍。
    结论 豆渣可作为唯一氮源进行红法夫酵母发酵产虾青素,经响应面试验进行工艺优化,红法夫酵母生产虾青素效率明显提升。研究可为虾青素生产中氮源成本控制及虾青素产量提升提供参考。

     

    Abstract:
    Objective  An astaxanthin-producing fermentation by Phaffia rhodozyma using okara for nitrogen was optimized.
    Methods  On the conventional fermentation by P. rhodozyma to make astaxanthin, okara was used to replace the commonly applied peptone and yeast extract as the organic nitrogen source for cost reduction. Effects of carbon sources, precursor substances, other nitrogen supply, vitamins, and inorganic salts on yield of astaxanthin were analyzed with the amounts of (NH4)2SO4, vitamin E, glucose, and sucrose optimized by response surface methodology.
    Results  When okara was used as a raw ingredient for the fermentation, glucose became the optimal carbon source. The yield of astaxanthin by the P. rhodozyma fermentation could be significantly increased by applying both glucose and sucrose, potassium salts such as KCl, KNO3, and K2HPO4 as well as (NH4)2SO4, VB2, VE, and zeaxanthin. Hence, the medium was optimized by response surface method on the 4 key ingredients of glucose, sucrose, K2SO4, and VE to arrive at a formulation consisting of 10% okara, 0.22% K2SO4, 0.6% VE, 1.08% glucose, and 1.50% sucrose to reach a yield of astaxanthin at 32.46 mg·L−1, which was 2.23 folds higher than what obtained by using the YM medium.
    Conclusion  Okara could amply be used to replace peptone and yeast extract as the nitrogen source for the astaxanthin production by P. rhodozyma fermentation.

     

/

返回文章
返回