• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄鳍东方鲀线粒体基因组结构及系统发育研究

朱春月 胡宗云 张健 张伯序 刘忠航 杨培民

朱春月,胡宗云,张健,等. 黄鳍东方鲀线粒体基因组结构及系统发育研究 [J]. 福建农业学报,2024,39(5):503−511 doi: 10.19303/j.issn.1008-0384.2024.05.001
引用本文: 朱春月,胡宗云,张健,等. 黄鳍东方鲀线粒体基因组结构及系统发育研究 [J]. 福建农业学报,2024,39(5):503−511 doi: 10.19303/j.issn.1008-0384.2024.05.001
ZHU C Y, HU Z Y, ZHANG J, et al. Mitochondrial Genome and Phylogeny of Takifugu xanthopterus [J]. Fujian Journal of Agricultural Sciences,2024,39(5):503−511 doi: 10.19303/j.issn.1008-0384.2024.05.001
Citation: ZHU C Y, HU Z Y, ZHANG J, et al. Mitochondrial Genome and Phylogeny of Takifugu xanthopterus [J]. Fujian Journal of Agricultural Sciences,2024,39(5):503−511 doi: 10.19303/j.issn.1008-0384.2024.05.001

黄鳍东方鲀线粒体基因组结构及系统发育研究

doi: 10.19303/j.issn.1008-0384.2024.05.001
基金项目: 辽宁省农业科学院基本科研业务费项目(2020XKHBZ0706、2021HQ1918);辽宁省科技厅民生科技计划项目(2021JH2/10200031)
详细信息
    作者简介:

    朱春月(1995 —),女,硕士,助理工程师,主要从事鱼类分子生物学研究,E-mail:18747551907@163.com

    通讯作者:

    杨培民(1979 —),男,硕士,研究员,主要从事特色淡水鱼养殖技术研究,E-mail:pmyang313@163.com

  • 中图分类号: S917.4

Mitochondrial Genome and Phylogeny of Takifugu xanthopterus

  • 摘要:   目的  研究我国大洋河水域黄鳍东方鲀(Takifugu xanthopterus)的分子遗传学特性,为黄鳍东方鲀种质资源遗传多样性和系统发育分析提供基础数据。  方法  利用高通量测序技术,获得黄鳍东方鲀线粒体基因组全序列,分析线粒体基因组结构。  结果  黄鳍东方鲀线粒体基因组序列全长16444 bp(GenBank 登录号:MT560586),由13 个蛋白质编码基因、22 个 tRNAs 基因、2 个 rRNAs 基因、1个控制区和1个轻链复制起始区组成。13个蛋白质编码基因中仅有cox1基因起始密码子为特殊的GTG,其余蛋白质编码基因均以ATG为起始密码子,cox2nad4终止密码子以单独的T结尾。偏好密码子(RSCU>2)分别是Arg(CGA)和Ser(UCC)。22 个tRNAs基因除trnS1基因外,其余tRNAs二级结构均为典型的三叶草结构。以斑腰单孔鲀(Monotreta leiurus)为外类群,对16种东方鲀属线粒体基因组全序列进行进化关系分析。由贝叶斯法构建的系统发生树表明,黄鳍东方鲀与痣斑多纪鲀(T. chrysops)和豹纹多纪鲀(T. pardalis)的亲缘关系最近。  结论  黄鳍东方鲀的线粒体基因组结构和基因排列顺序符合鱼类基因组典型结构和排列特征。
  • 图  1  黄鳍东方鲀粒体基因组结构

    Figure  1.  Structure of T. xanthopterus mitochondrial genome

    图  2  黄鳍东方鲀线粒体基因组密码子使用频率分布

    *为终止密码子。

    Figure  2.  Frequency distribution of codon usage in T. xanthopterus mitochondrial genome

    * means stop codon.

    图  3  黄鳍东方鲀22个 tRNAs的二级结构

    Figure  3.  Secondary structures of 22 tRNAs genes of T. xanthopterus

    图  4  基于最大似然法和贝叶斯法的黄鳍东方鲀系统进化树

    Figure  4.  Phylogenetic tree of T. xanthopterus based on maximum likelihood and Bayesian inference

    表  1  黄鳍东方鲀线粒体基因组结构组成

    Table  1.   Composition of T. xanthopterus mitochondrial genome

    名称
    Name
    起始位点
    Start site/bp
    终止位点
    Stop site/bp
    编码链
    Strand
    长度
    Length/bp
    基因间隔
    Intergenic length/bp
    起始/终止密码子
    Start/stop codons
    trnF(gaa) 1 68 H 68 0  
    12S rRNA 69 1015 H 947 0  
    trnV(tac) 1016 1088 H 73 38  
    16S rRNA 1127 2756 H 1630 0  
    trnL2(taa) 2757 2829 H 73 0  
    nad1 2830 3804 H 975 2 ATG/TAA
    trnI(gat) 3807 3876 H 70 −1  
    trnQ(ttg) 3876 3946 L 71 −1  
    trnM(cat) 3946 4014 H 69 0  
    nad2 4015 5061 H 1047 −1 ATG/TAA
    trnW(tca) 5061 5131 H 71 1  
    trnA(tgc) 5133 5201 L 69 2  
    trnN(gtt) 5204 5277 L 74 3  
    OL 5281 5312 H 32 −1  
    trnC(gca) 5312 5375 L 64 −1  
    trnY(gta) 5375 5444 L 70 1  
    cox1 5446 7005 H 1560 −9 GTG/AGG
    trnS2(tga) 6997 7067 L 71 3  
    trnD(gtc) 7071 7142 H 72 6  
    cox2 7149 7839 H 691 0 ATG/T(AA)
    trnK(ttt) 7840 7912 H 73 1  
    atp8 7914 8081 H 168 −10 ATG/TAA
    atp6 8072 8755 H 684 −1 ATG/TAA
    cox3 8755 9540 H 786 −1 ATG/TAA
    trnG(tcc) 9540 9610 H 71 0  
    nad3 9611 9961 H 351 −2 ATG/TAG
    trnR(tcg) 9960 10028 H 69 1  
    nad4l 10030 10326 H 297 −7 ATG/TAA
    nad4 10320 11700 H 1381 0 ATG/T(AA)
    trnH(gtg) 11701 11769 H 69 0  
    trnS1(gct) 11770 11837 H 68 5  
    trnL1(tag) 11843 11915 H 73 0  
    nad5 11916 13754 H 1839 −5 ATG/TAA
    nad6 13750 14271 L 522 0 ATG/AGG
    trnE(ttc) 14272 14340 L 69 4  
    cob 14345 15481 H 1137 3 ATG/TAA
    trnT(tgt) 15485 15556 H 72 −1  
    trnP(tgg) 15556 15625 L 70 0  
    D-loop 15626 16444 H 423 0
    下载: 导出CSV

    表  2  黄鳍东方鲀偏好密码子RSCU值

    Table  2.   RSCUs for preference codons in T. xanthopterus

    密码子
    Codon
    数量
    Number
    相对密码子
    使用频率
    RSCU
    密码子
    Codon
    数量
    Number
    相对密码子
    使用频率
    RSCU
    密码子
    Codon
    数量
    Number
    相对密码子
    使用频率
    RSCU
    密码子
    Codon
    数量
    Number
    相对密码子
    使用频率
    RSCU
    UUU(F)670.73UCU(S)891.42UAU(Y)540.82UGU(C)90.53
    UUC(F)1161.27UCC(S)1402.23UAC(Y)771.18UGC(C)251.47
    UUA(L)1231.29UCA(S)721.15UAA(*)671.00UGA(*)671.00
    UUG(L)620.65UCG(S)380.60UAG(*)671.00UGG(W)311.00
    CUU(L)880.92CCU(P)921.15CAU(H)440.78CGU(R)70.66
    CUC(L)1101.16CCC(P)1091.36CAC(H)691.22CGC(R)80.75
    CUA(L)1401.47CCA(P)811.01CAA(Q)941.26CGA(R)292.72
    CUG(L)480.50CCG(P)380.48CAG(Q)550.74CGG(R)80.75
    AUU(I)911.02ACU(T)750.90AAU(N)470.67AGU(S)90.14
    AUC(I)1031.15ACC(T)1241.49AAC(N)931.33AGC(S)290.46
    AUA(I)740.83ACA(T)1061.27AAA(K)771.33AGA(R)70.66
    AUG(M)531.00ACG(T)290.35AAG(K)390.67AGG(R)50.47
    GUU(V)360.95GCU(A)610.98GAU(D)390.99GGU(G)220.63
    GUC(V)481.26GCC(A)1091.76GAC(D)401.01GGC(G)491.41
    GUA(V)491.29GCA(A)671.08GAA(E)611.13GGA(G)491.41
    GUG(V)190.50GCG(A)110.18GAG(E)470.87GGG(G)190.55
    下载: 导出CSV

    表  3  黄鳍东方鲀线粒体基因组核苷酸组成

    Table  3.   Nucleotide composition of T. xanthopterus mitochondrial genome

    项目
    Item
    T含量
    T content/%
    C含量
    C content/%
    A含量
    A content/%
    G含量
    G content/%
    AT含量
    AT content/%
    GC 偏好性
    GC-skew
    AT 偏好性
    AT-skew
    tRNA 24.4 25.18 31.96 18.46 56.36 0.1539 0.1341
    rRNA 21.11 24.78 34.46 19.66 55.56 0.1152 0.2402
    蛋白质编码基因 PCGs 26.58 31.47 28.13 13.82 54.71 0.3897 0.0283
    控制区 Control region 32.23 18.93 36.39 12.45 68.62 0.2065 0.0606
    下载: 导出CSV
  • [1] KIM J H, MOK J S, SON K T, et al. Toxicity of the puffer fish, Takifugu xanthopterus (Kkachibok) and Takifugu stictonotus (Kkachilbok) from coastal area of Korea [J]. Journal of the Korean Fisheries Society, 2007, 40(5): 276−281.
    [2] MASUDA H, FUKUMOTO M, HIRAYOSHI K, et al. Coexpression of the collagen-binding stress protein HSP47 gene and the alpha 1(I) and alpha 1(III) collagen genes in carbon tetrachloride-induced rat liver fibrosis [J]. The Journal of Clinical Investigation, 1994, 94(6): 2481−2488. doi: 10.1172/JCI117617
    [3] 舒琥, 崔绍杰, 张海发, 等. 野生、养殖型黄鳍东方鲀河豚毒素测定及营养成分分析[C]//2008年中国水产学会学术年会论文摘要集, 2008: 47.
    [4] 苏捷, 张农, 姜琳琳. 河鲀毒素检测的研究进展 [J]. 福建水产, 2007, 29(2):76−79.

    SU J, ZHANG N, JIANG L L. The review of tetrodotoxin detecting [J]. Journal of Fisheries Research, 2007, 29(2): 76−79. (in Chinese)
    [5] 舒琥, 谭嘉敏, 赵会宏, 等. 黄鳍东方鲀精子的超微结构 [J]. 广东海洋大学学报, 2008, 28(6):9−13.

    SHU H, TAN J M, ZHAO H H, et al. Ultrastructure of spermatozoa of Takifugu xanthopterus observed by scanning and transmission electron microscopy [J]. Journal of Guangdong Ocean University, 2008, 28(6): 9−13. (in Chinese)
    [6] 张海发, 舒琥, 王云新, 等. 盐度及pH对黄鳍东方鲀受精卵孵化和仔鱼活力的影响 [J]. 广东海洋大学学报, 2007, 27(3):28−32.

    ZHANG H F, SHU H, WANG Y X, et al. Effects of salinity and pH on hatching and larval activity of Takifugu xanthopterus [J]. Journal of Guangdong Ocean University, 2007, 27(3): 28−32. (in Chinese)
    [7] 钟建兴, 刘波, 郑惠东, 等. 黄鳍东方鲀人工育苗技术及胚胎、仔稚幼鱼发育特征研究 [J]. 海洋科学, 2015, 39(7):43−51.

    ZHONG J X, LIU B, ZHENG H D, et al. Research on artificial breeding technology and developmental characteristics of embryo and juvenile of Fugu xanthopterus [J]. Marine Sciences, 2015, 39(7): 43−51. (in Chinese)
    [8] 李振, 周德庆. 河鲀鱼食用安全与加工利用 [J]. 渔业现代化, 2006, 33(5):38−40,44.

    LI Z, ZHOU D Q. Edible safety, processing and utilization of Fugu fish [J]. Fishery Modernization, 2006, 33(5): 38−40,44. (in Chinese)
    [9] 舒琥, 赵会宏, 卢宝仙, 等. 黄鳍东方鲀外周血细胞显微结构及血液学指标研究 [J]. 水产科学, 2007, 26(4):200−203.

    SHU H, ZHAO H H, LU B X, et al. Microstructure of peripheral blood cells and hematological parameters in yellowfin puffer Takifugu xanthopterus [J]. Fisheries Science, 2007, 26(4): 200−203. (in Chinese)
    [10] 毛婕, 龚小玲, 鲍宝龙. 东海区黄鳍东方鲀寄生异尖线虫的鉴定及河鲀毒素检测 [J]. 上海海洋大学学报, 2020, 29(4):585−592.

    MAO J, GONG X L, BAO B L. Identification of TTX Anisakis pegreffii parasites in Takifugu xanthopterus from the East China Sea [J]. Journal of Shanghai Ocean University, 2020, 29(4): 585−592. (in Chinese)
    [11] 任涛, 蒋云升, 薛菲, 等. 养殖黄鳍东方鲀肠道菌群初步分析 [J]. 科技信息, 2013, (10):46−47. doi: 10.3969/j.issn.1001-9960.2013.10.039

    REN T, JIANG Y S, XUE F, et al. Preliminary analysis of intestinal flora of cultured Fugu flavipectus [J]. Science & Technology Information, 2013(10): 46−47. (in Chinese) doi: 10.3969/j.issn.1001-9960.2013.10.039
    [12] 赵婷婷, 蒋云升, 邱创, 等. 黄海产黄鳍东方鲀微生物菌群的初步调查 [J]. 扬州大学烹饪学报, 2013, 30(2):59−61.

    ZHAO T T, JIANG Y S, QIU C, et al. Investigation on bacteria groups in Takifugu xanthopterus in the Yellow Sea [J]. Culinary Science Journal of Yangzhou University, 2013, 30(2): 59−61. (in Chinese)
    [13] 钟建兴, 刘波, 钟然, 等. Fugu xanthopterus与Fugu bimaculatus及其正反交子一代的ISSR遗传分析 [J]. 应用海洋学学报, 2015, 34(2):197−201.

    ZHONG J X, LIU B, ZHONG R, et al. Genetic analysis with ISSR method on reciprocal hybrid progeny between Fugu xanthopterus and Fugu bimaculatus [J]. Journal of Applied Oceanography, 2015, 34(2): 197−201. (in Chinese)
    [14] XIA Y, ZHENG Y C, MURPHY R W, et al. Intraspecific rearrangement of mitochondrial genome suggests the prevalence of the tandem duplication-random loss (TDLR) mechanism in Quasipaa boulengeri [J]. BMC Genomics, 2016, 17(1): 965. doi: 10.1186/s12864-016-3309-7
    [15] PENG Z G, WANG J, HE S P. The complete mitochondrial genome of the helmet catfish Cranoglanis bouderius (Siluriformes: Cranoglanididae) and the phylogeny of otophysan fishes [J]. Gene, 2006, 376(2): 290−297. doi: 10.1016/j.gene.2006.04.014
    [16] 梁宏伟, 李林, 李忠, 等. 基于mtDNA全序列的南方大口鲇进化分析 [J]. 西北农林科技大学学报(自然科学版), 2011, 39(11):80−88.

    LIANG H W, LI L, LI Z, et al. Phylogenetic analysis of Silurus meridionalis based on the complete mitochondrial DNA sequence [J]. Journal of Northwest A& F University (Natural Science Edition), 2011, 39(11): 80−88. (in Chinese)
    [17] 邵爱华, 杜建, 陈葵, 等. 暗纹东方鲀线粒体基因组核苷酸全序列测定与分析 [J]. 动物学杂志, 2010, 45(5):18−28.

    SHAO A H, DU J, CHEN K, et al. Sequence and analysis of the complete mitochondrial genome of Takifugu fasciatus [J]. Chinese Journal of Zoology, 2010, 45(5): 18−28. (in Chinese)
    [18] 闫永斌, 程起群. 基于线粒体全基因组结构的鲳属鱼类分子分类研究 [J]. 海洋渔业, 2022, 44(1):31−44.

    YAN Y B, CHENG Q Q. Study on molecular taxonomy of genus Pampus based on complete mitochondrial genome structure [J]. Marine Fisheries, 2022, 44(1): 31−44. (in Chinese)
    [19] WULANDARI T N M, RAIS A H. Study identification of some species of fish using the partial fragment of mitochondrial cytochrome oxidase subunit-1Gene (COI) in danau Panggang, South Borneo [J]. Journal of Aquaculture and Fish Health, 2021, 10(2): 229. doi: 10.20473/jafh.v10i2.24215
    [20] MUSCHICK M, NIKOLAEVA E, RÜBER L, et al. The mitochondrial genome of the red icefish (Channichthys rugosus) casts doubt on its species status [J]. Polar Biology, 2022, 45(10): 1541−1552. doi: 10.1007/s00300-022-03083-8
    [21] RUE C R, SELWYN J D, COCKETT P M, et al. Genetic diversity across the mitochondrial genome of eastern oysters (Crassostrea virginica) in the northern Gulf of Mexico [J]. PeerJ, 2021, 9: e12205. doi: 10.7717/peerj.12205
    [22] HU X S, LUAN P X, CAO C H, et al. Characterization of the mitochondrial genome of Megalobrama terminalis in the Heilong River and a clearer phylogeny of the genus Megalobrama [J]. Scientific Reports, 2019, 9(1): 8509. doi: 10.1038/s41598-019-44721-2
    [23] 迪丽娜·茹斯坦木, 袁晓倩, 张琪, 等. 基于线粒体基因组数据的裂腹鱼类系统发育研究 [J]. 中国水产科学, 2022, 29(6):781−791.

    RUSTAM Delara, YUAN X Q, ZHANG Q, et al. Study on the phylogeny of Schizothoracids based on complete mitochondrial genome [J]. Journal of Fishery Sciences of China, 2022, 29(6): 781−791. (in Chinese)
    [24] 罗德怀. 鲟形目鱼类分子系统发育研究[D]. 重庆: 西南大学, 2018.

    LUO D H. Molecular phylogenetics of Acipenseriformes[D]. Chongqing: Southwest University, 2018. (in Chinese)
    [25] YAMANOUE Y, MIYA M, MATSUURA K, et al. Explosive speciation of Takifugu: Another use of Fugu as a model system for evolutionary biology [J]. Molecular Biology and Evolution, 2009, 26(3): 623−629.
    [26] DIERCKXSENS N, MARDULYN P, SMITS G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data [J]. Nucleic Acids Research, 2017, 45(4): e18.
    [27] BERNT M, DONATH A, JÜHLING F, et al. MITOS: Improved de novo metazoan mitochondrial genome annotation [J]. Molecular Phylogenetics and Evolution, 2013, 69(2): 313−319. doi: 10.1016/j.ympev.2012.08.023
    [28] LOWE T M, CHAN P P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes [J]. Nucleic Acids Research, 2016, 44(W1): W54−W57. doi: 10.1093/nar/gkw413
    [29] JIANG H B, BAO J, HAN Y. Mitochondrial DNA sequence of the hybrid of Takifugu flavidus (♀) × Takifugu rubripes (♂) [J]. Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis, 2016, 27(3): 2117−2118.
    [30] ELETTO D, MAGANTY A, ELETTO D, et al. Limitation of individual folding resources in the ER leads to outcomes distinct from the unfolded protein response[J]. Journal of Cell Science, 2012, 125(Pt 20): 4865−4875.
    [31] LI W X, SONG R, WU S, et al. Seasonal occurrence of helminths in the anadromous fish Coilia nasus (Engraulidae): Parasite indicators of fish migratory movements [J]. The Journal of Parasitology, 2011, 97(2): 192−196. doi: 10.1645/GE-2621.1
    [32] 廖贤晖, 王乙婷, 瞿印权, 等. 瑞氏红鲂鮄(Satyrichthys rieffeli)基因组survey分析及线粒体基因组注释 [J]. 海洋与湖沼, 2023, 54(5):1517−1528.

    LIAO X H, WANG Y T, QU Y Q, et al. The genome survey analysis and mitochondrial genome annotation of Satyrichthys rieffeli [J]. Oceanologia et Limnologia Sinica, 2023, 54(5): 1517−1528. (in Chinese)
    [33] SATOH T P, MIYA M, MABUCHI K, et al. Structure and variation of the mitochondrial genome of fishes [J]. BMC Genomics, 2016, 17(1): 719. doi: 10.1186/s12864-016-3054-y
    [34] OJALA D, MONTOYA J, ATTARDI G. tRNA punctuation model of RNA processing in human mitochondria [J]. Nature, 1981, 290(5806): 470−474. doi: 10.1038/290470a0
    [35] SATOH M, HIRAYOSHI K, YOKOTA S, et al. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen [J]. The Journal of Cell Biology, 1996, 133(2): 469−483. doi: 10.1083/jcb.133.2.469
    [36] YU P, ZHOU L, ZHOU X Y, et al. Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes [J]. International Journal of Biological Macromolecules, 2019, 129: 339−350. doi: 10.1016/j.ijbiomac.2019.01.200
    [37] OHTSUKI T, KAWAI G, WATANABE K. The minimal tRNA: Unique structure of Ascaris suum mitochondrial tRNA(Ser)(UCU) having a short T arm and lacking the entire D arm [J]. FEBS Letters, 2002, 514(1): 37−43. doi: 10.1016/S0014-5793(02)02328-1
    [38] 赵玉明. 虹银汉鱼科4种鱼类线粒体基因组分析及系统发育研究[D]. 上海: 上海海洋大学, 2017.

    ZHAO Y M. Study on mitochondrial genome analysis and phylogeny of four species in melanotaeniidae[D]. Shanghai: Shanghai Ocean University, 2017. (in Chinese)
    [39] BEAUMONT A. Genetics and evolution of aquatic organisms [J]. Reviews in Fish Biology and Fisheries, 2004, 5: 385−386.
    [40] 江驰航, 胡子文, 王智诚, 等. 3个线粒体基因在红鳍东方鲀和暗纹东方鲀中的比较分析 [J]. 安徽农业科学, 2020, 48(9):125−128,132. doi: 10.3969/j.issn.0517-6611.2020.09.034

    JIANG C H, HU Z W, WANG Z C, et al. Comparative analysis of 3 mitochondrial genes between Takifugu rubripes and Takifugu obscurus [J]. Journal of Anhui Agricultural Sciences, 2020, 48(9): 125−128, 132. (in Chinese) doi: 10.3969/j.issn.0517-6611.2020.09.034
    [41] 何丽斌, 陈芳, 朱志煌, 等. 基于线粒体16S rRNA、COX1和Cytb基因探讨11种小丑鱼的系统发育关系[J]. 福建农业学报, 2018, 33(3): 230−235.

    HE L B, CHEN F, ZHU Z Y , et al. Molecular Phylogeny Determined by Mitochondrial Genes 16S rRNA, COX1 and Cytb of Eleven Anemonefish Species[J]. Fujian Journal of Agricultural Sciences, 2018, 33(3): 230−235. (in Chinese).
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  69
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 修回日期:  2024-02-01
  • 网络出版日期:  2024-06-26
  • 刊出日期:  2024-05-28

目录

    /

    返回文章
    返回