Five Traits Affected by Breeding of Indica-Japonica Hybrids
-
摘要:
目的 水稻籼粳亚种间杂交具有强大的杂种优势已成为当前水稻育种关注的焦点,本研究旨在为籼粳交水稻育种实践以及水稻关键性状的遗传研究提供理论依据。 方法 按照NC-II不完全双列杂交方式,选择14个亲本材料并配组48个杂交组合,采用植物数量性状的加性-显性遗传模型(A-D模型)分析生育期、株高与粒形相关性状等共计5个农艺性状的遗传效应、杂种优势及性状之间的相关性。 结果 籼粳亚种间杂交稻生育期、株高、粒长、粒宽及长宽比等的加性方差分量占遗传主效应比率(VA/VP)比值分别为69.2%、74.2%、58.9%、66.0%和63.5%。广义遗传率(H2B)和狭义遗传率(H2N)的变幅分别为59.0%~99.6%和69.2%~98.9%,均达显著或极显著水平,主要受加性效应控制,且受环境影响小,在育种上早期选择有效。大多数的籼粳亚种间杂种一代的生育期、株高和粒形性状均呈负向中亲优势和负向超亲优势,杂交后代的生育期缩短、株高降低,长宽比介于双亲之间。籼粳亚种间杂交稻生育期是一个独立遗传的品种特性,株高与粒形具呈显著正相关。 结论 在籼粳交育种上应关注生育期、株高,粒形等性状间的协调,有效利用杂种优势,培育强优势亚种间杂交稻新组合。 Abstract:Objective Genetic improvement on 5 traits of rice through heterosis by hybridizing Indica-Japonica was analyzed. Method Following the NC-II incomplete diallel hybridization protocol, 14 rice parents and 48 hybrid combinations were generated for the analysis. Genetics, heterosis, and correlations of growth period, plant height, spikelet length, spikelet width, and spikelet length-width ratio of the varieties were evaluated according to the additive and dominant genetic effects. Result The ratios of additive variance component to phenotypic variance (VA/VP) on the growth period, plant height, spikelet length, spikelet width, and spikelet length-width ratio of the rice were 69.2%, 74.2%, 58.9%, 66.0%, and 63.5%, respectively. The variations of broad-sense heritability (H2B) and narrow-sense heritability (H2N) were 59.0%–99.6% and 69.2%–98.9%, respectively, at significant or extremely significant level. The traits were largely controlled by additive effects, little by environmental factors, and only effective for early generation selection in breeding practice. The growth period, plant height, spikelet length, pikelet width, and spikelet length-width ratio of most combinations displayed a heterosis of both negative intermediate and super parent hybrid vigor. The growth period of the hybrids was shortened, the plant height reduced, and the spikelet length-width ratio in between two parents. The growth period was an independent genetic trait, while the plant height somewhat positively correlated with the grain shape. Conclusion In breeding Indica-Japonicahybrids, balancing the benefits gained on the growth period, plant height, grain shape, and other traits through heterosis needed be carefully considered. -
Key words:
- rice /
- Indica-Japonica /
- growth period /
- plant height /
- grain shape /
- genetic effect
-
表 1 8个两系不育系的程式指数分类情况
Table 1. Cheng’s index on morphological traits of 8 two-line sterile rice lines
不育系
Sterile line稃毛
Spikelet hair酚反应
Spikelet phenol reaction穗轴1~2节长
1–2 internodes
of panicle抽穗时壳色
Spikelet color叶毛
Leaf hair谷粒长宽比
Grain length to
width ratio程氏指数
Index籼粳属性
Indica japonica
attribute珍 S
Zhen S1 4 3 4 2 0 14 偏粳
Japonicaclinou银1 S
Yin-1 S2 2 3 4 1 1 13 偏籼
IndicaclinouCS602 2 4 3 4 2 1 16 偏粳
JaponicaclinouCS603 2 4 3 4 1 1 15 偏粳
JaponicaclinouCS604 2 4 3 4 2 1 16 偏粳
JaponicaclinouCS605 2 4 3 4 1 0 14 偏粳
JaponicaclinouCS606 0 2 2 2 3 0 9 偏籼
Indicaclinou隆科638S
Longke-638 S0 1 2 2 2 1 8 籼
Indica9311(CK1) 1 1 0 0 2 2 6 籼
Indica日本晴
Nipponbare(CK2)4 4 1 4 4 3 20 粳
Japonica程氏指数0~8为籼,9~13为偏籼,14~17为偏粳,18~24为粳。
Index 0–8: indica; Index 9–13: indicaclinou; Index 14–17: japonicaclinou; Index 18–24: japonica.表 2 5个性状遗传方差组成及遗传率
Table 2. Genetic variance components and heritability of 5 traits
性状
Character加性方差
VA显性
方差
VD剩余
方差
VE表型方差
VP加性方差
比率
VA/VP显性方差
比率
VD/VP剩余方差
比率
VE/VP广义
遗传率
H2B狭义
遗传率
H2N生育期
Growth period33.793* 14.839* 0.173* 48.807* 0.692* 0.304** 0.004** 0.996** 0.692** 株高
Plant height171.428** 57.046** 2.388** 230.861** 0.742** 0.247** 0.010** 0.742** 0.989** 颖花长
Spikelet length0.095* 0.064* 0.002+ 0.161** 0.589** 0.398** 0.0122 +0.590** 0.988* 颖花宽
Spikelet width0.008** 0.004** 0.0002 *0.127** 0.660** 0.323** 0.016* 0.660** 0.984** 颖花长宽比
Spikelet length-width ratio0.028** 0.016** 0.001* 0.045** 0.635** 0.352** 0.013* 0.635** 0.987** +、*和**分别表示差异达到 0.10、0.05 和 0.01 显著水平。下同。
+, * and **: Significant differences at 0.10, 0.05, and 0.01 levels, respectively. Same for below.表 3 6个恢复系及8个不育系的生育期、株高与粒形性状的加性效应预测值
Table 3. Predicted additive effects on 5 traits of 8 two-line sterile rice lines and 6 restorer lines
亲本
Parents生育期
Growth period株高
Plant height颖花长
Spikelet length颖花宽
Spikelet width颖花长宽比
Spikelet length-width ratioCP1 3.232** 11.536** 0.065** 0.064** −0.061** CP2 1.726** 3.642** 0.292** 0.020** 0.105** CP3 0.500** 8.053** 0.061** 0.014** 0.003+ CP4 2.646** 14.006** 0.160** −0.038** 0.139** CP5 2.587** 9.991** 0.109** −0.080** 0.182** CP6 3.845** 9.554** 0.129** −0.077** 0.186** 珍S
Zhen S−7.344** −5.541** 0.079* 0.104** 0.031* 银1S
Yin-1 S−8.315** −11.347** −0.491** −0.067** −0.140** CS602 2.290** −4.644** −0.273** −0.049** −0.059** CS603 0.020 −9.169** −0.225** −0.033** −0.062** CS604 −1.024** −9.625** −0.091** −0.026** −0.006 CS605 −2.251** −8.145** 0.094** 0.045** −0.022 CS606 −3.476** −9.501** 0.237** 0.118** −0.073** 隆科638S
Longke-638 S5.565** 1.188 −0.147** 0.005* −0.221** 表 4 48个杂种一代5个农艺性状的显性效应预测值
Table 4. Predicted dominant effects of 5 traits of 48 hybrids
组合
Combination生育期
Growth period株高
Plant height颖花长
Spikelet length颖花宽
Spikelet width颖花长宽比
Spikelet length-width ratio珍S/CP1
Zhen S/ CP1−0.940* 9.820** 0.015 0.058** −0.091* 银1S/CP1
Yin-1 S/CP10.638* −7.293** −0.287** −0.060** −0.052* CS602/CP1 −0.639* 8.726* 0.156** −0.014 0.084** CS603/CP1 0.627* 0.401 0.030 0.027 −0.033 CS604/CP1 1.546** 7.430** 0.023 0.027** −0.035+ CS605/CP1 1.513** −3.332** −0.059** −0.007 −0.022 CS606/CP1 −4.102** −0.534 −0.206** −0.005+ −0.076** 隆科638S/CP1
Long ke-638 S/CP12.980** 10.927** 0.106+ 0.078** −0.054* 珍S/CP2
Zhen S/ CP20.641 15.419** 0.019 0.212** −0.313** 银1S /CP2
Yin-1 S/CP2−0.575* −0.090 −0.147* −0.053* 0.022+ CS602/CP2 0.049 1.938 0.105* 0.085** −0.078** CS603/CP2 −4.987** −2.163 0.034* 0.013* −0.005 CS604/CP2 1.187** −0.825 0.016 0.010 −0.003 CS605/CP2 1.190** 4.846* −0.084* −0.020* −0.006 CS606/CP2 −4.985** 1.943 −0.261** −0.022* −0.081** 隆科638S/CP2
Longke-638 S/CP20.993* −10.935** 0.004 −0.146** 0.215** 珍S /CP3
Zhen S/ CP3−1.553* −2.429** −0.340* −0.025* −0.121* 银1S /CP3
Yin-1 S/CP32.238** −3.276* −0.165* −0.043* −0.008 CS602/CP3 0.811+ 5.151+ −0.306** −0.087** −0.007 CS603/CP3 0.087 6.365* −0.112* 0.053* −0.136* CS604/CP3 0.786* 7.294** −0.222* −0.041** −0.042 CS605/CP3 −1.969** 0.590 −0.018 −0.040* 0.050 CS606 /CP3 2.529* −1.768 −0.103 0.049+ −0.113* 隆科638S /CP3
Longke-638 S/CP3−11.767* 4.928 * 0.114 0.027 0.011** 珍S/CP4
Zhen S/ CP4−3.244** −3.248** −0.263** 0.002 −0.135** 银1S /CP4
Yin-1 S/CP4−4.864** 3.518* −0.297* 0.097* −0.293** CS602/CP4 −4.408** 8.181** −0.169** −0.041** −0.010 CS603/CP4 3.402** 5.340+ −0.138+ −0.068* 0.044** CS604/CP4 −0.768* −2.920+ −0.170* −0.061+ 0.016 CS605/CP4 1.423** 12.050** −0.036 −0.030 0.021 CS606/CP4 1.169** −1.162* −0.066+ 0.033** −0.082* 隆科638S/CP4
Longke-638 S/CP48.933** 3.251+ −0.010 0.026* −0.061* 珍S/CP5
Zhen S/ CP5−5.614** 2.291+ −0.162+ −0.043* −0.010 银1S /CP5
Yin-1 S/CP5−9.496** 11.312** −0.347* −0.021+ −0.140* CS602/CP5 1.646** 3.730* −0.121* −0.060** 0.052+ CS603/CP5 −0.407+ 2.944 0.043* −0.019 0.059* CS604/CP5 1.329* −0.391 −0.010 −0.019+ 0.027 CS605/CP5 3.828** 7.091* −0.130** −0.087** 0.073** CS606/CP5 3.196** 6.381* −0.101* 0.031* −0.108* 隆科638S/CP5
Longke-638 S/CP59.480** 7.371* 0.064* 0.075* −0.101** 珍S/CP6
Zhen S/ CP6−0.204 1.532 −0.249** −0.068** −0.003 银1S /CP6
Yin-1 S/CP6−5.610** −0.373 −0.327* −0.104* 0.013 CS602/CP6 −2.373** 0.803 0.038+ −0.013 0.044** CS603/CP6 −0.762** 2.082 −0.021 −0.055** 0.088* CS604/CP6 2.418** 4.349* 0.042 0.072* −0.09* CS605/CP6 3.363** −1.242 −0.176** −0.115** 0.102** CS606/CP6 1.936** 7.310** −0.148* −0.001 −0.076** 隆科638S/CP6
Long ke-638 S/CP67.307** 7.995** −0.194* 0.010 −0.127* 变幅 Amount range −11.767~9.480 −10.935~15.419 −0.347~0.156 −0.146~0.212 −0.313~0.215 正向效应组合数
Positive combinations28(24) 32(20) 15(5) 19(13) 16(8) 负向效应组合数
Negative combinations20(18) 16(7) 33(24) 29(19) 32(20) 括号内数字为差异显著水平大于0.10的组合数。表5同。
Data in parentheses represent number of combinations with significant differences over 0.10. Same for Table5.表 5 5个性状的群体平均优势(Hpm)和超亲优势(Hbp)预测值
Table 5. Hpm and Hbp predicted values of 5 characters in 48 combinations
杂种优势
Heterosis组合
Combination生育期
Growth period株高
Plant height颖花长
Spikelet length颖花宽
Spikelet width颖花长宽比
Spikelet length-width ratio群体平均优势
(Hpm)变幅
Amount range−0.137~0.145 −0.039~0.281 −0.135~0.123 −0.119~0.123 −0.180~0.050 平均值
Average−0.005 0.120** −0.065** −0.017** −0.048** 正向组合数
Positive combinations23(0) 47(2) 3(0) 7(0) 1(0) 正向平均值
Average0.051 0.119 0.053 0.026 0.019 负向组合数
Negative combinations25(1) 1(0) 45(1) 41(4) 47(3) 负向平均值
Average−0.048 −0.039 −0.067 −0.038 −0.059 超亲优势预测值
(Hbp)变幅
Amount range−0.239~0.139 −0.237~0.118 −0.239~-0.038 −0.200~0.107 −0.233~0.026 平均值
Average−0.075** −0.078** −0.127** −0.055** −0.124** 正向组合数
Positive combinations5(1) 11(3) 0 7(4) 1(1) 正向平均值
Average0.086 0.033 0 0.028 0.026 负向组合数
Negative combinations43(0) 37(3) 48(0) 41(37) 47(46) 负向平均值
Average−0.094 −0.104 −0.060 −0.069 −0.125 表 6 杂种一代生育期、株高和粒形性状表型、遗传、加性与显性相关性分析
Table 6. Correlations between phenotypic, genetic, additive and dominate effects and growth period, plant height, and grain shape of 48 hybrids
性状
Character生育期
Growth period株高
Plant height颖花长
Spikelet length颖花宽
Spikelet width颖花长宽比
Spikelet length-width ratio生育期
Growth period0.228+ 0.086+ 0.029 0.093 0.025 0.074 0.011 0.043 株高
Plant height0.147+ 0.173+ 0.044+ 0.223+ 0.136+ 0.099* 0.068+ 0.125+ 颖花长
Spikelet length0.077+ 0.054* 0.056 0.208* 0.076+ 0.051* 0.359 0.239+ 颖花宽
Spikelet width0.009+ 0.013* 0.038 0.101+ 0.017 0.016* 0.080+ 0.446 颖花长宽比
Spikelet length-width ratio0.074 0.087+ 0.215* 0.051 0.072 0.082+ 0.211+ 0.123+ 右上角为加性(上)、显性(下)相关系数,左下角为表型(上)、遗传(下)相关系数;+、*和**分别表示差异达到 0.10、0.05和0.01显著水平。
On upper right corner, additive (up) and dominant (down) correlation coefficients; on lower left corner, phenotypic (up) and genetic (down) correlation coefficients ; +, * and ** represent significant differences at 0.10, 0.05, and 0.01 levels, respectively. -
[1] 丁文家, 胡峻铭, 王嘉力. 水稻育种主要目标性状基因挖掘研究进展 [J]. 杂交水稻, 2023, 38(3):1−19.DING W J, HU J M, WANG J L. Research progress on gene mining of main target traits in rice breeding [J]. Hybrid Rice, 2023, 38(3): 1−19. (in Chinese) [2] 张现伟, 杨远柱, 肖人鹏, 等. 中国两系法杂交水稻品种审定及应用分析 [J]. 杂交水稻, 2023, 38(6):1−7.ZHANG X W, YANG Y Z, XIAO R P, et al. Analysis on registration and application of two-line hybrid rice varieties in China [J]. Hybrid Rice, 2023, 38(6): 1−7. (in Chinese) [3] 徐伟东, 蔡金洋, 杨尧城. 水稻籼粳亚种间杂种优势利用研究现状与展望 [J]. 中国稻米, 2016, 22(2):1−7. doi: 10.3969/j.issn.1006-8082.2016.02.001XU W D, CAI J Y, YANG Y C. Research progress and prospect on utilization of heterosis between indica-Japonica rice subspecies [J]. China Rice, 2016, 22(2): 1−7. (in Chinese) doi: 10.3969/j.issn.1006-8082.2016.02.001 [4] 许娜, 徐铨, 徐正进, 等. 水稻株型生理生态与遗传基础研究进展 [J]. 作物学报, 2023, 49(7):1735−1746.XU N, XU Q, XU Z J, et al. Research progress on physiological ecology and genetic basis of rice plant architecture [J]. Acta Agronomica Sinica, 2023, 49(7): 1735−1746. (in Chinese) [5] 莫伊凡, 吴伊宁, 余四斌. 绿色超级稻品种培育及其发展 [J]. 中国稻米, 2022, 28(5):7−13. doi: 10.3969/j.issn.1006-8082.2022.05.002MO Y F, WU Y N, YU S B. Breeding of green super rice and its perspectives [J]. China Rice, 2022, 28(5): 7−13. (in Chinese) doi: 10.3969/j.issn.1006-8082.2022.05.002 [6] 赵健, 尹合兴, 朱承祺, 等. 中国水稻百年育种的一些标志性品种 [J]. 中国稻米, 2022, 28(5):66−73. doi: 10.3969/j.issn.1006-8082.2022.05.011ZHAO J, YIN H X, ZHU C Q, et al. The Most Remarkable Varieties in 100 year’s Rice Breeding in China [J]. China Rice, 2022, 28(5): 66−73. (in Chinese) doi: 10.3969/j.issn.1006-8082.2022.05.011 [7] 袁隆平. 两系法杂交水稻研究的进展 [J]. 中国农业科学, 1990, 23(3):1−6. doi: 10.3321/j.issn:0578-1752.1990.03.003YUAN L P. Progress of two-line system hybrid rice breeding [J]. Scientia Agricultura Sinica, 1990, 23(3): 1−6. (in Chinese) doi: 10.3321/j.issn:0578-1752.1990.03.003 [8] 米甲明, 欧阳亦聃. 水稻籼粳亚种间杂种优势利用的理论与实践 [J]. 华中农业大学学报, 2022, 41(1):40−47.MI J M, OUYANG Y D. Theory and practice of utilizing Xian-Geng inter-subspecific heterosis in rice [J]. Journal of Huazhong Agricultural University, 2022, 41(1): 40−47. (in Chinese) [9] 覃勇, 潘文兴, 陆干伟, 等. Y两优1109在桂南的种植表现和高产栽培技术 [J]. 杂交水稻, 2019, 34(5):29−30.QIN Y, PAN W X, LU G W, et al. Planting performance and high-yielding cultivation techniques of Y liangyou 1109 in southern Guangxi [J]. Hybrid Rice, 2019, 34(5): 29−30. (in Chinese) [10] 秦叶波, 王岳钧, 毛国娟, 等. 浙江省超级稻示范推广成效与经验 [J]. 中国稻米, 2020, 26(3):58−60.QIN Y B, WANG Y J, MAO G J, et al. Effects and experience of demonstration and extension of super rice in Zhejiang Province [J]. China Rice, 2020, 26(3): 58−60. (in Chinese) [11] 叶龙荣. 籼粳杂交稻作烟后稻栽培的品种筛选研究 [J]. 杂交水稻, 2022, 37(4):133−135.YE L R. Varietal selection of indica-japonica hybrid rice for tobacco-rice cultivation [J]. Hybrid Rice, 2022, 37(4): 133−135. (in Chinese) [12] 林建荣, 宋昕蔚, 吴明国, 等. 籼粳超级杂交稻育种技术创新与品种培育 [J]. 中国农业科学, 2016, 49(2):207−218. doi: 10.3864/j.issn.0578-1752.2016.02.002LIN J R, SONG X W, WU M G, et al. Breeding technology innovation of indica-Japonica super hybrid rice and varietal breeding [J]. Scientia Agricultura Sinica, 2016, 49(2): 207−218. (in Chinese) doi: 10.3864/j.issn.0578-1752.2016.02.002 [13] 黄捷. 利用程氏指数分类法对水稻恢复系籼粳的分类与评价研究 [J]. 现代农业科技, 2015, (13):27−28. doi: 10.3969/j.issn.1007-5739.2015.13.012HUANG J. Study on classification and evaluation of indica-Japonica rice restorer lines by Cheng’s index classification [J]. Modern Agricultural Science and Technology, 2015(13): 27−28. (in Chinese) doi: 10.3969/j.issn.1007-5739.2015.13.012 [14] 徐静斐, 孙五成, 程融, 等. 数量遗传学与水稻育种[M]. 合肥: 安徽科学技术出版社, 1990.XU J F, SUN W C, CHENG R, et al. Quantitative genetics and rice breeding[M]. Hefei: Anhui Science & Technology Publishing House, 1990. (in Chinese) [15] 朱军. 中国博士专著农业领域 遗传模型分析方法: 中国博士专著[M]. 北京: 中国农业出版社, 1997. [16] 邬相宏, 张杰, 江青山, 等. 几个新选水稻不育系主要农艺性状的配合力及通径分析 [J]. 福建农业学报, 2023, 38(4):401−409.WU X H, ZHANG J, JIANG Q S, et al. Agronomic trait combining abilities and correlation with yield of new male sterile rice lines [J]. Fujian Journal of Agricultural Sciences, 2023, 38(4): 401−409. (in Chinese) [17] 林川. 三个改良水稻恢复系抗瘟性、农艺性状及配合力评价[D]. 武汉: 华中农业大学, 2023.LIN C. Evaluation of blast resistance, agronomic characters and combining ability of three improved rice restorer lines[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese) [18] 吴建梅, 林荔辉, 吴为人, 等. 水稻籼粳交亲籼型不育系的杂种优势利用 [J]. 福建农林大学学报(自然科学版), 2012, 41(1):1−6.WU J M, LIN L H, WU W R, et al. Heterosis’s application of indica-compatibility CMS lines of hybrids between indica and japonica in rice [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2012, 41(1): 1−6. (in Chinese) [19] 付新民, 王岩, 高冠军, 等. 利用水稻重组自交系进行配合力遗传分析 [J]. 华中农业大学学报, 2010, 29(4):397−402.FU X M, WANG Y, GAO G J, et al. Combining ability analysis in rice using recombinant inbred lines [J]. Journal of Huazhong Agricultural University, 2010, 29(4): 397−402. (in Chinese) [20] 董俊杰, 张馨月, 富昊伟, 等. “粳不籼恢” 杂交稻主要农艺性状的遗传参数分析 [J]. 杂交水稻, 2023, 38(6):14−21.DONG J J, ZHANG X Y, FU H W, et al. Analysis of genetic parameters of main agronomic characters of hybrid rice between the Japonica CMS line and wide-compatibility indica restorer line [J]. Hybrid Rice, 2023, 38(6): 14−21. (in Chinese) [21] 张雪丽, 张征, 胡中立, 等. 杂交水稻品质性状的配合力及遗传力研究 [J]. 分子植物育种, 2017, 15(10):4133−4142.ZHANG X L, ZHANG Z, HU Z L, et al. Study on combining ability and heritability of quality characters in hybrid rice [J]. Molecular Plant Breeding, 2017, 15(10): 4133−4142. (in Chinese) [22] 万建民. 水稻籼粳交杂种优势利用研究 [J]. 杂交水稻, 2010, 25(S1):3−6.WAN J M. Study on utilization of heterosis in indica-Japonica hybrid rice [J]. Hybrid Rice, 2010, 25(S1): 3−6. (in Chinese) [23] 王旭虹, 李鸣晓, 张群, 等. 籼型血缘对籼粳稻杂交后代产量和加工及外观品质的影响 [J]. 作物学报, 2019, 45(4):538−545. doi: 10.3724/SP.J.1006.2019.82031WANG X H, LI M X, ZHANG Q, et al. Effect of indica pedigree on yield and milling and appearance qualities in the offspring of indica/japonica cross [J]. Acta Agronomica Sinica, 2019, 45(4): 538−545. (in Chinese) doi: 10.3724/SP.J.1006.2019.82031 [24] 周筱婉, 陈建国. 水稻亚种间杂交粒重及加工品质性状的遗传效应分析 [J]. 生物数学学报, 2010, 25(4):693−700.ZHOU X W, CHEN J G. Genetic effects of kernel weight and milling quality traits in hybrid rice between subspecies [J]. Journal of Biomathematics, 2010, 25(4): 693−700. (in Chinese) [25] 赖上坤, 陈春, 赖尚科, 等. 水稻主要农艺性状和抗倒性的基因型差异及其相互关系 [J]. 核农学报, 2018, 32(7):1256−1266. doi: 10.11869/j.issn.100-8551.2018.07.1256LAI S K, CHEN C, LAI S K, et al. Genotypic differences and correlations between rice main agronomic traits and lodging-resistance [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1256−1266. (in Chinese) doi: 10.11869/j.issn.100-8551.2018.07.1256 [26] 章忠贵, 刘斌美, 许学, 等. 水稻株高突变系的农艺性状与抗倒伏研究 [J]. 核农学报, 2010, 24(3):430−435. doi: 10.11869/hnxb.2010.03.0430ZHANG Z G, LIU B M, XU X, et al. Agronomic characters and lodging resistance of plant height mutants of rice [J]. Journal of Nuclear Agricultural Sciences, 2010, 24(3): 430−435. (in Chinese) doi: 10.11869/hnxb.2010.03.0430 [27] 杨艳华, 朱镇, 张亚东, 等. 不同水稻品种(系)抗倒伏能力与茎秆形态性状的关系 [J]. 江苏农业学报, 2011, 27(2):231−235. doi: 10.3969/j.issn.1000-4440.2011.02.001YANG Y H, ZHU Z, ZHANG Y D, et al. Relationship between lodging resistance and stem morphological traits in different rice varieties(lines) [J]. Jiangsu Journal of Agricultural Sciences, 2011, 27(2): 231−235. (in Chinese) doi: 10.3969/j.issn.1000-4440.2011.02.001