• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用HYSPLIT模型分析茶园假眼小绿叶蝉迁飞扩散行为

高冬梅 皇甫佳一 郭萧

高冬梅,皇甫佳一,郭萧. 利用HYSPLIT模型分析茶园假眼小绿叶蝉迁飞扩散行为 [J]. 福建农业学报,2024,39(5):593−599 doi: 10.19303/j.issn.1008-0384.2024.05.011
引用本文: 高冬梅,皇甫佳一,郭萧. 利用HYSPLIT模型分析茶园假眼小绿叶蝉迁飞扩散行为 [J]. 福建农业学报,2024,39(5):593−599 doi: 10.19303/j.issn.1008-0384.2024.05.011
GAO D M, HUANGFU J Y, . Migration and Dispersion of Empoasca vitis in Tea Plantations Analyzed by HYSPLIT [J]. Fujian Journal of Agricultural Sciences,2024,39(5):593−599 doi: 10.19303/j.issn.1008-0384.2024.05.011
Citation: GAO D M, HUANGFU J Y, . Migration and Dispersion of Empoasca vitis in Tea Plantations Analyzed by HYSPLIT [J]. Fujian Journal of Agricultural Sciences,2024,39(5):593−599 doi: 10.19303/j.issn.1008-0384.2024.05.011

利用HYSPLIT模型分析茶园假眼小绿叶蝉迁飞扩散行为

doi: 10.19303/j.issn.1008-0384.2024.05.011
基金项目: 重庆市市级财政科研项目(cqaas2023sjczqn024、cqaas2023sjczzd001);重庆市科研机构绩效激励引导专项(cstc2021jxjl80022、cqaas2022jxjl007);重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1197)
详细信息
    作者简介:

    高冬梅(1981 — ),女,硕士,助理研究员,主要从事农业害虫天敌的景观调控研究,E-mail:283532286@qq.com

    通讯作者:

    郭萧(1980 —),男,博士,副研究员,主要从事农业昆虫与害虫防治研究,E-mail:qiyeshu2000@qq.com

  • 中图分类号: S435

Migration and Dispersion of Empoasca vitis in Tea Plantations Analyzed by HYSPLIT

  • 摘要:   目的  明确假眼小绿叶蝉[Empoasca vitis (Göthe)]迁飞扩散行为特征,揭示影响其种群迁飞扩散的关键因素。  方法  利用系留气球悬挂诱虫黄板诱捕不同朝向、不同高度假眼小绿叶蝉,通过HYSPLIT-4气流动力模型和气象数据,分析模拟假眼小绿叶蝉迁飞扩散行为。通过田间虫口调查,结合种群密度与扩散系数分析,明确推动假眼小绿叶蝉种群分布转化的驱动因素。  结果  假眼小绿叶蝉最高飞行高度为8 m,2~8 m高度内,随高度增加,假眼小绿叶蝉数量逐步下降。HYSPLIT-4气流动力模型分析结果表明,假眼小绿叶蝉迁飞轨迹只与迁飞时间有关,高度对其迁飞轨迹与直线扩散距离没有影响。此外,HYSPLIT-4气流动力模型分析结果还表明,假眼小绿叶蝉24 h直线迁飞距离为35.70~178.10 km。种群密度与扩散系数分析表明,假眼小绿叶蝉有聚集分布和随机分布两种分布型,迁飞和扩散是导致两种分布型转化的重要因素。  结论  借助气流,假眼小绿叶蝉可以实现区域性的迁飞。在种群密度驱动下,假眼小绿叶蝉种群分布存在聚集分布和随机分布的转化,也促使假眼小绿叶蝉种群发生田间扩散和区域性迁飞。因此,假眼小绿叶蝉的防控应以主要防治区为中心,向外扩展200 km 的范围内开展统防统治。
  • 图  1  不同高度黄板诱集的叶蝉数量

    A:相同高度不同方向上黄板所粘假眼小绿叶蝉数量百分比比较;B:同一方向,不同高度黄板所粘假眼小绿叶蝉数量百分比比较;图中数据为平均值±标准误,经Duncan’s新复极差检验(One-way ANOVA),A图中同一高度数据具有相同字母者表示差异不显著(P>0.05);B图中同一朝向数据具有相同字母者表示差异不显著(P>0.05)。

    Figure  1.  Number of E. vitis trapped by yellow insect-trapping board at different heights

    A: Comparison by percentage of E. vitis caught on traps at same height and different orientations; B: Comparison by percentage of E. vitis caught on traps at same orientation and different heights; data are mean±standard error, as tested by Duncan's new replicated extreme variance test (one-way ANOVA); data with same letter on columns of same height in A indicate insignificant differences (P>0.05); data with same letter on columns of same orientation in B indicate insignificant differences (P>0.05).

    图  2  假眼小绿叶蝉不同起飞时间24 h内模拟迁飞路线

    A:6月11日起飞24 h前向轨迹模拟;B:6月12日起飞24 h前向轨迹模拟;6月13日起飞24 h前向轨迹模拟;6月14日起飞24 h前向轨迹模拟;红色、蓝色、绿色轨迹分别对应8、4、2 m的起飞高度。A: June 11th takeoff forward trajectory simulation; B: June 12 takeoff forward trajectory simulation; C: June 13th takeoff forward trajectory simulation; D: June 14th takeoff forward trajectory simulation; The red, blue, and green trajectories correspond to takeoff heights of 8, 4, and 2 m, respectively.

    Figure  2.  Migration trajectories of E. vitis in 24 h from different take-off times

    图  3  假眼小绿叶蝉虫口密度与扩散系数

    Figure  3.  Population density and dispersion coefficient of E. vitis

    表  1  试验地气象数据

    Table  1.   Meteorological data at test site

    日期
    Date
    最高气温
    Maximum
    temperature /℃
    最低气温
    Minimum
    temperature /℃
    日平均气温
    Average daily
    temperature /℃
    天气
    Weather
    风级与风向
    Beaufort scale
    and direction
    日平均风速
    Average daily wind
    speed/ (m·s−1)
    06-10 27.0 18.0 24.2
    Cloudy
    西南风2级
    Southwest wind force 2
    2.5
    06-11 25.0 19.0 22.1
    Cloudy
    东北风2级
    Northeast wind force 2
    1.9
    06-12 25.0 19.0 22.3
    Cloudy
    东风2级
    East wind force 2
    2.8
    06-13 25.0 20.0 22.6
    Fog
    东南风4级
    Southeast wind force 4
    6.2
    06-14 29.0 23.0 24.5 小雨
    Drizzle
    东北风2级
    Northeast wind force 2
    3.2
    使用当日2:00、8:00、14:00、20:00的温度值、风速值计算日平均气温和日平均风速。日最低气温和日最高气温由仪器自动记录。风向以当日持续时间最长的风向为当日风向。
    Daily average air temperature and wind speed are calculated using measurements at hours of 2:00, 8:00, 14:00, and 20:00. Daily minimum and maximum temperatures are recorded automatically by instrument. Wind direction is the prevailing one of a day.
    下载: 导出CSV

    表  2  不同起飞时间假眼小绿叶蝉模拟迁飞着落点及直线距离

    Table  2.   Simulated landing sites and migration distances of E. vitis at different take-off times

    日期
    Date
    迁飞起算时间
    Take-off time
    历时
    Flight time/h
    高度
    Height/m
    着落经度
    Longitude of the landing site
    着落纬度
    Latitude of the landing site
    着落点位置
    Landing site
    直线迁飞距离
    Straight-line migration distance/km
    06-11 5:00 24 2 106.5467o E 29.2040 o N 重庆市巴南区 35.27
    4 106.5467o E 29.2040 o N 重庆市巴南区 35.27
    6 106.5467o E 29.2040 o N 重庆市巴南区 35.27
    8 106.5467o E 29.2040 o N 重庆市巴南区 35.27
    06-12 5:00 24 2 106.2560o E 29.5961 o N 重庆市璧山区 48.78
    4 106.2419 o E 29.6080 o N 重庆市璧山区 50.47
    6 106.2289 o E 29.6200 o N 重庆市璧山区 52.07
    8 106.2150 o E 29.6340 o N 重庆市璧山区 53.84
    06-13 5:00 24 2 105.2911 o E 28.7945 o N 四川省泸州市 159.57
    4 105.2909 o E 28.7947 o N 四川省泸州市 159.58
    6 105.2212 o E 28.7953 o N 四川省泸州市 165.54
    8 105.0697 o E 28.8094 o N 四川省泸州市 178.10
    06-14 5:00 24 2 105.7789 o E 29.3321 o N 重庆市永川区 94.36
    4 105.7789 o E 29.3321 o N 重庆市永川区 94.36
    6 105.7789 o E 29.3321 o N 重庆市永川区 94.36
    8 105.7789 o E 29.3321 o N 重庆市永川区 94.36
    根据HYSPLIT模拟轨迹,利用Google earth 6.0 (Google Inc.,NASDAQ:GOOG)测得着落点经纬度及直线迁飞距离。
    Latitude, longitude, and distance of a landing site were measured from HYSPLIT simulated trajectory using Google Earth 6.0 (Google Inc., NASDAQ: GOOG).
    下载: 导出CSV

    表  3  假眼小绿叶蝉种群扩散系数

    Table  3.   Dispersion coefficient on E. vitis population

    日期
    Date
    扩散系数C

    扩散系数95%置信区间
    Diffusion coefficient 95%
    confidence interval
    04-02 0.8962* 0.6089
    04-17 0.5643* 0.9462
    05-02 0.4421* 0.5839
    05-19 0.4807 0.4281
    06-02 0.3318 0.2087
    06-17 0.6290 0.2036
    07-02 0.8289 0.1328
    07-17 0.7715 0.1758
    08-02 0.4571 0.2010
    08-17 0.2460 0.2502
    09-01 0.3253 0.2808
    09-16 0.5267 0.3652
    10-02 0.5976 0.3243
    10-16 0.6324* 0.6077
    *代表扩散系数C值在95%置信区间内。
    *: dispersion coefficient C within 95% confidence intervals.
    下载: 导出CSV
  • [1] 熊兴平. 假眼小绿叶蝉防治研究进展 [J]. 茶叶科学技术, 2003, 44(4):1−5.

    XIONG X P. Research progress on control of Empoasca vitis [J]. Technology of Tea Science, 2003, 44(4): 1−5. (in Chinese)
    [2] 王庆森, 王定锋, 吴光远. 我国茶树假眼小绿叶蝉研究进展 [J]. 福建农业学报, 2013, 28(6):615−623. doi: 10.3969/j.issn.1008-0384.2013.06.022

    WANG Q S, WANG D F, WU G Y. Research advances on Empoasca vitis(Göthe)in tea trees in China [J]. Fujian Journal of Agricultural Sciences, 2013, 28(6): 615−623. (in Chinese) doi: 10.3969/j.issn.1008-0384.2013.06.022
    [3] 朱俊庆. 茶树害虫[M]. 北京: 中国农业科技出版社, 1999.
    [4] HELDEN V M, DECANT D. The possibilities for conservation biocontrol as a management strategy against Empoasca vitis [J]. IOBC/WPRS Bull., 2001, 24(7): 291−299.
    [5] DECANT D, HELDEN V M. Intra-plot distribution of the green leafhopper Empoasca vitis in a Bordeaux vineyard [J]. IOBC/WPRS Bull., 2003, 26(8): 181−188.
    [6] DECANT, D, HELDEN, V M. Green leafhopper (Empoasca vitis Göthe) migrations and dispersions [J]. IOBC/WPRS Bull., 2003, 26(8): 189−196.
    [7] 边磊, 孙晓玲, 陈宗懋. 假眼小绿叶蝉的日飞行活动性及成虫飞行能力的研究 [J]. 茶叶科学, 2014, 34(3):248−252. doi: 10.3969/j.issn.1000-369X.2014.03.008

    BIAN L, SUN X L, CHEN Z M. Studies on daily flight activity and adult flight capacity of Empoasca vitis Göthe [J]. Journal of Tea Science, 2014, 34(3): 248−252. (in Chinese) doi: 10.3969/j.issn.1000-369X.2014.03.008
    [8] 芦芳, 翟保平, 胡高. 昆虫迁飞研究中的轨迹分析方法 [J]. 应用昆虫学报, 2013, 50(3):853−862. doi: 10.7679/j.issn.2095-1353.2013.119

    LU F, ZHAI B P, HU G. Trajectory analysis methods for insect migration research [J]. Chinese Journal of Applied Entomology, 2013, 50(3): 853−862. (in Chinese) doi: 10.7679/j.issn.2095-1353.2013.119
    [9] STEIN A F, DRAXLER R R, ROLPH G D, et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system [J]. Bulletin of the American Meteorological Society, 2015, 96(12): 2059−2077. doi: 10.1175/BAMS-D-14-00110.1
    [10] OTUKA A, WATANABE T, SUZUKI Y, et al. Real-time prediction system for migration of rice planthoppers Sogatella furcifera (Horváth) And Nilaparvata lugens (Stål) (Homoptera: Delphacidae) [J]. Applied Entomology and Zoology, 2005, 40(2): 221−229. doi: 10.1303/aez.2005.221
    [11] 王凤英, 胡高, 陈晓, 等. 近年来广西南宁稻纵卷叶螟大发生原因分析 [J]. 中国水稻科学, 2009, 23(5):537−545. doi: 10.3969/j.issn.1001-7216.2009.05.14

    WANG F Y, HU G, CHEN X, et al. Analysis on the causes of recent outbreaks of Cnaphalocrocis medinalis in Nanning, China [J]. Chinese Journal of Rice Science, 2009, 23(5): 537−545. (in Chinese) doi: 10.3969/j.issn.1001-7216.2009.05.14
    [12] HU G, LU F, LU M H, et al. The influence of Typhoon Khanun on the return migration of Nilaparvata lugens (Stål) in Eastern China [J]. PLoS One, 2013, 8(2): e57277. doi: 10.1371/journal.pone.0057277
    [13] 郁振兴, 武予清, 蒋月丽, 等. 利用HYSPLIT模型分析麦蚜远距离迁飞前向轨迹 [J]. 生态学报, 2011, 31(3):889−896.

    YU Z X, WU Y Q, JIANG Y L, et al. Forward trajectory analysis of wheat aphids during long-distance migration using HYSPLIT model [J]. Acta Ecologica Sinica, 2011, 31(3): 889−896. (in Chinese)
    [14] TAYLOR L. Assessing and interpreting the spatial distributions of insect populations [J]. Annual Review of Entomology, 1984, 29: 321−357. doi: 10.1146/annurev.en.29.010184.001541
    [15] 高宇, 孙晓玲, 边磊, 等. 假眼小绿叶蝉成虫在茶园中的活动规律研究 [J]. 北方园艺, 2013, (16):134−136.

    GAO Y, SUN X L, BIAN L, et al. Study on activity rhythms of adult Empoasca vitis Göthe in tea plantations [J]. Northern Horticulture, 2013(16): 134−136. (in Chinese)
    [16] 李金玉, 王庆森, 李良德, 等. 茶小绿叶蝉种名变更及其种群发生与生物生态环境关系的研究进展 [J]. 福建农业学报, 2022, 37(1):123−130.

    LI J Y, WANG Q S, LI L D, et al. Research progress on the dominant species identification of tea green leafhopper and the relationship between its population and the biological and ecological environment [J]. Fujian Journal of Agricultural Sciences, 2022, 37(1): 123−130. (in Chinese)
    [17] 翟保平, 张孝羲. 迁飞过程中昆虫的行为: 对风温场的适应与选择 [J]. 生态学报, 1993, 13(4):356−363. doi: 10.3321/j.issn:1000-0933.1993.04.002

    ZHAI B P, ZHANG X X. Behaviour of migrating insects: Adaptation and selection to atmospheric environment [J]. Acta Ecologica Sinica, 1993, 13(4): 356−363. (in Chinese) doi: 10.3321/j.issn:1000-0933.1993.04.002
    [18] FENG H L, GUO X, SUN H Y, et al. Flight muscles degenerate by programmed cell death after migration in the wheat aphid, Sitobion avenae [J]. BMC Research Notes, 2019, 12(1): 672. doi: 10.1186/s13104-019-4708-z
    [19] 周宁宁, 王梦馨, 崔林, 等. 基于COI基因全长序列的假眼小绿叶蝉地理种群遗传分化研究 [J]. 生态学报, 2014, 34(23):6879−6889.

    ZHOU N N, WANG M X, CUI L, et al. Genetic variation of Empoasca vitis(Göthe)(Hemiptera: Cicadellidae) among different geographical populations based on mtDNA COI complete sequence [J]. Acta Ecologica Sinica, 2014, 34(23): 6879−6889. (in Chinese)
    [20] 贝文勇. 茶树小绿叶蝉空间分布型及抽样技术探讨 [J]. 广西植保, 2010, 23(2):5−8. doi: 10.3969/j.issn.1003-8779.2010.02.002

    BEI W Y. Discussion on spatial distribution pattern and sampling technology of tea leafhopper [J]. Guangxi Plant Protection, 2010, 23(2): 5−8. (in Chinese) doi: 10.3969/j.issn.1003-8779.2010.02.002
    [21] 包云轩, 孙梦秋, 严明良, 等. 基于两种轨迹模型的褐飞虱迁飞轨迹比较研究 [J]. 生态学报, 2016, 36(19):6122−6138.

    BAO Y X, SUN M Q, YAN M L, et al. Comparative study of migration trajectories of the brown planthopper, Nilaparvata lugens(Stål), in China based on two trajectory models [J]. Acta Ecologica Sinica, 2016, 36(19): 6122−6138. (in Chinese)
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  83
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-01-19
  • 网络出版日期:  2024-06-26
  • 刊出日期:  2024-05-28

目录

    /

    返回文章
    返回