• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

橡胶灵芝菌内参基因筛选与分析

赵欣阳 罗佑红 蔡海滨 周燚 涂敏

赵欣阳,罗佑红,蔡海滨,等. 橡胶灵芝菌内参基因筛选与分析 [J]. 福建农业学报,2024,39(5):615−622 doi: 10.19303/j.issn.1008-0384.2024.05.014
引用本文: 赵欣阳,罗佑红,蔡海滨,等. 橡胶灵芝菌内参基因筛选与分析 [J]. 福建农业学报,2024,39(5):615−622 doi: 10.19303/j.issn.1008-0384.2024.05.014
ZHAO X Y, LUO Y H, CAI H B, et al. Selection of Reference Genes in Ganoderma pseudoferreum for Studying a Rubber Tree Disease [J]. Fujian Journal of Agricultural Sciences,2024,39(5):615−622 doi: 10.19303/j.issn.1008-0384.2024.05.014
Citation: ZHAO X Y, LUO Y H, CAI H B, et al. Selection of Reference Genes in Ganoderma pseudoferreum for Studying a Rubber Tree Disease [J]. Fujian Journal of Agricultural Sciences,2024,39(5):615−622 doi: 10.19303/j.issn.1008-0384.2024.05.014

橡胶灵芝菌内参基因筛选与分析

doi: 10.19303/j.issn.1008-0384.2024.05.014
基金项目: 国家重点研发计划项目(2023YFD1200204);海南省重点研发计划项目(ZDYF2021XDNY291);海南省优秀人才团队项目(20210203)
详细信息
    作者简介:

    赵欣阳(2000 — ),女,硕士,主要从事分子植物病理学研究,E-mail:xyzhao1219@163.com

    通讯作者:

    周燚(1972 — ),男,博士,教授,主要从事分子植物病理学研究,E-mail:zhouyi@yangtzeu.edu.cn

    涂敏(1980 — ),女,博士,副研究员,主要从事作物绿色防控研究,E-mail:tm_tumin@163.com

  • 中图分类号: S432

Selection of Reference Genes in Ganoderma pseudoferreum for Studying a Rubber Tree Disease

  • 摘要:   目的  分析评价不同胁迫处理的橡胶灵芝菌候选内参基因的稳定性,为探索橡胶灵芝菌基因的功能及其侵染橡胶树的分子机制等提供参考。  方法  以5个非生物因子(温度、盐、氧化、pH、干旱)和1个生物因子(生防细菌)胁迫下的橡胶灵芝菌作为材料,提取RNA并反转录为cDNA,采用实时荧光定量PCR技术,扩增6个候选内参基因(UBCACTRPL6β-TUBAPT28s),利用分析软件geNorm、NormFinder、BestKeeper和RefFinder根据基因表达的稳定性对基因进行排序,选择最适合不同胁迫的内参基因组合。  结果  所有样品RNA均为清晰的两条带,且6个候选内参基因的熔解曲线为明显单一峰。结合geNorm、NormFinder、Bestkeeper和RefFinder对其进行表达稳定性分析发现,温度胁迫下基因表达稳定性为UBCACTRPL6β-TUB28sAPT,盐胁迫下基因表达稳定性为ACTRPL6UBCAPTβ-TUB28s;氧化胁迫下基因表达稳定性为UBCACT28sAPTβ-TUBRPL6;pH胁迫下基因表达稳定性为RPL6UBCAPTACTβ-TUB28s,干旱胁迫下基因表达稳定性为ACTUBCβ-TUBRPL6APT>28s,生物胁迫下基因表达稳定性为UBCACTRPL628sAPTβ-TUB  结论  结合所有候选基因稳定性和胁迫条件,推荐基因ACTUBC作为在干旱、氧化、温度和生物胁迫下的内参基因,基因ACTRPL6为盐胁迫下的内参基因,UBCRPL6为pH胁迫下的内参基因。本研究结果为不同胁迫下橡胶灵芝菌相关基因的表达研究提供了合适的内参基因。
  • 图  1  总RNA提取

    A1:CK;A2~A7:盐胁迫;A8~A12:干旱胁迫;A13~B2:pH胁迫;B3~B7:氧化胁迫;B8~B11:温度胁迫;B12~B14:生物胁迫。

    Figure  1.  Extraction of total RNA

    A1: CK; A2–A7: salt stress; A8–A12: drought stress; A13–B2: pH stress; B3–B7: oxidation stress; B8–B11: temperature stress; B12–B14: biotic stress.

    图  2  6个候选内参基因熔解曲线

    A~F分别为 ACT、UBC、β-TUB、RPL6、APT、28s

    Figure  2.  Melting curves generated for 6 reference genes

    A: ACT; B: UBC; C: β-TUB; D: RPL6; E: APT; F: 28s.

    图  3  6个候选内参基因RT-qPCR分析的Ct值

    Figure  3.  Ct values of 6 candidate reference genes analyzed by RT-qPCR

    图  4  geNorm分析6个候选内参基因的表达稳定性值(M)

    A:盐胁迫;B:pH胁迫;C:干旱胁迫;D:氧化胁迫;E:温度胁迫;F:生物胁迫。

    Figure  4.  Expression stability values (M) of 6 candidate reference genes by geNorm

    A: salt stress; B: pH stress; C: drought stress; D: oxidation stress; E: temperature stress; F: biotic stress.

    图  5  geNorm软件分析所需内参基因的数目

    Figure  5.  Required number of reference genes by geNorm

    图  6  候选参考基因稳定性的RefFinder排序

    A:盐胁迫;B:pH胁迫;C:干旱胁迫;D:氧化胁迫;E:温度胁迫;F:生物胁迫。

    Figure  6.  Stability of candidate reference genes ranked by RefFinder

    A: salt stress; B: pH stress; C: drought stress; D: oxidation stress; E: temperature stress; F: biotic stress.

    表  1  RT-qPCR引物

    Table  1.   RT-qPCR primers

    基因
    Gene
    GenBank登录号
    GenBank No.
    引物序列
    Primer sequence (5'-3')
    扩增长度
    Amplification length /bp
    UBC KAF9027008 TCTGGCGGCGTCTTCTTCCT 106
    TGGCATTGATGTTCGGGTGG
    ACT KAF9050787 CATCGAGCACGGTATTGTCA 167
    TCTCGAACATGATTTGGGTC
    β-TUB KAF9039628 CAAATGCAGAACGTCCAGAAC 159
    GTGAACTCCATCTCGTCCATAC
    RPL6 KAF9033237 CTGTACCTCGTCGGTGTCGG 137
    GTTGGCGTCTCCACCTTTGC
    APT GL18178 GAGTACGGTGTGGATGTCTTC 130
    CGAGCTTGGCTACGAGTTC
    28s 无登录号 GCATATCAATAAGCGGAGGA 130
    GCACTTCTCCAGACTACAAC
    下载: 导出CSV

    表  2  NormFinder稳定性分析

    Table  2.   Stability analysis by NormFinder

    排名
    Rank
    盐胁迫
    Salt stress (GroupSD)
    pH胁迫
    pH stress (GroupSD)
    干旱胁迫
    Drought stress (GroupSD)
    氧化胁迫
    Oxidative stress (GroupSD)
    温度胁迫
    Heat stress (GroupSD)
    生物胁迫
    Biotic stress (GroupSD)
    1 RPL6(0.02) RPL6(0.05) UBC(0.05) UBC(0.02) UBC(0.04) UBC(0.04)
    2 APT(0.02) β-TUB(0.05) ACT(0.05) APT(0.02) ACT(0.04) ACT(0.06)
    3 UBC(0.11) APT(0.05) β-TUB(0.07) ACT(0.02) RPL6(0.12) RPL6(0.07)
    4 β-TUB(0.11) UBC(0.07) RPL6(0.07) RPL6(0.1) β-TUB(0.19) APT(0.08)
    5 ACT(0.11) ACT(0.07) APT(0.15) β-TUB(0.11) 28s(0.46) 28s(0.11)
    6 28s(0.53) 28s(0.24) 28s(0.24) 28s(0.15) APT(0.56) β-TUB(0.12)
    下载: 导出CSV

    表  3  Bestkeeper稳定性分析

    Table  3.   Stability analysis by Bestkeeper

    排名
    Rank
    盐胁迫
    Salt stress (CV±SD)
    pH胁迫
    pH stress (CV±SD)
    干旱胁迫
    Drought stress (CV±SD)
    氧化胁迫
    Oxidative stress (CV±SD)
    温度胁迫
    Heat stress (CV±SD)
    生物胁迫
    Biotic stress (CV±SD)
    1 ACT(2.17±0.37) RPL6(0.89±0.25) UBC(1.53±0.23) UBC(2.90±0.37) UBC(0.44±0.06) UBC(0.53±0.07)
    2 RPL6(2.30±0.65) APT(1.11±0.26) RPL6(1.84±0.49) ACT(3.29±1.46) RPL6(1.32±0.44) ACT(1.11±0.20)
    3 UBC(3.02±0.50) ACT(1.71±0.30) ACT(2.50±0.42) APT(3.59±0.82) ACT(3.72±0.48) RPL6(1.50±0.43)
    4 β-TUB(3.07±0.74) UBC(1.74±0.29) β-TUB(4.23±1.07) β-TUB(3.86±1.21) β-TUB(4.35±1.03) β-TUB(4.46±1.45)
    5 APT(3.68±0.87) β-TUB(2.73±0.67) APT(5.19±1.23) RPL6(5.47±1.45) 28s(25.65±4.14) APT(6.79±1.72)
    6 28s(25.41±1.95) 28s(23.73±1.88) 28s(10.06±1.21) 28s(6.82±0.59) APT(32.66±5.95) 28s(7.41±0.97)
    下载: 导出CSV
  • [1] NANDRIS D, NICOLE M, GEIGER J P. Root rot diseases of rubber trees [J]. Plant Disease, 1987, 71(4): 298−306. doi: 10.1094/PD-71-0298
    [2] 张运强, 张辉强, 邓晓东. 橡胶树红根病病原菌的鉴定 [J]. 热带作物学报, 1997, 18(1):16−23.

    ZHANG Y Q, ZHANG H Q, DENG X D. Identification of pathogenic fungi of rubber red root disease [J]. Chinese Journal of Tropical Crops, 1997, 18(1): 16−23. (in Chinese)
    [3] 丁婧钰. 橡胶树与相思树病原灵芝种类鉴定及生物学特性研究[D]. 海口: 海南大学, 2018.

    DING J Y. Type identification of pathogenic Ganoderma and biological characteristics of the rubber tree and Acacia spp. [D]. Haikou: Hainan University, 2018. (in Chinese)
    [4] YANG Y T, ZHANG X, CHEN Y, et al. Selection of reference genes for normalization of microRNA expression by RT-qPCR in sugarcane buds under cold stress [J]. Frontiers in Plant Science, 2016, 7: 86.
    [5] ZHAO X, YANG H L, CHEN M J, et al. Reference gene selection for quantitative real-time PCR of mycelia from Lentinula edodes under high-temperature stress [J]. BioMed Research International, 2018, 2018: 1670328.
    [6] 张越. 黑木耳qRT-PCR内参基因的筛选及功能基因表达水平的研究[D]. 长春: 吉林农业大学, 2020.

    ZHANG Y. Studies of screening of reference genes and functional genes expression levels of Auricularia heimuer for qRT-PCR[D]. Changchun: Jilin Agricultural University, 2020. (in Chinese)
    [7] 刘英, 喻晓明, 蔡佺佑, 等. 巨大口蘑内参基因的筛选 [J]. 食用菌学报, 2017, 24(4):12−18.

    LIU Y, YU X M, CAI Q Y, et al. Reference gene selection for real-time quantitative PCR in Tricholoma giganteum [J]. Acta Edulis Fungi, 2017, 24(4): 12−18. (in Chinese)
    [8] 赵建霞, 沈颖越, 冯伟林, 等. 双孢蘑菇内参基因的筛选与矫正 [J]. 浙江农业学报, 2019, 31(8):1312−1320. doi: 10.3969/j.issn.1004-1524.2019.08.12

    ZHAO J X, SHEN Y Y, FENG W L, et al. Screening of internal reference gene of Agaricus bisporus [J]. Acta Agriculturae Zhejiangensis, 2019, 31(8): 1312−1320. (in Chinese) doi: 10.3969/j.issn.1004-1524.2019.08.12
    [9] XU J, XU Z C, ZHU Y J, et al. Identification and evaluation of reference genes for qRT-PCR normalization in Ganoderma lucidum [J]. Current Microbiology, 2014, 68(1): 120−126. doi: 10.1007/s00284-013-0442-2
    [10] 武晨剑. 金针菇不同发育阶段差异基因筛选及转录因子FfMYB和FfGAL基因的原核表达与纯化[D]. 太谷: 山西农业大学, 2021.

    WU C J. Screening of differentially expression genes related to different developmental stages of Flammulina filiformis and prokaryotic expression and purification of transcription factors FfMYB and FfGAL[D]. Taigu: Shanxi Agricultural University, 2021. (in Chinese)
    [11] ANDERSEN C L, JENSEN J L, ØRNTOFT T F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J]. Cancer Research, 2004, 64(15): 5245−5250. doi: 10.1158/0008-5472.CAN-04-0496
    [12] VANDESOMPELE J, DE PRETER K, PATTYN F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Genome Biology, 2002, 3(7): RESEARCH0034. doi: 10.1186/gb-2002-3-7-reports0034
    [13] PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations [J]. Biotechnology Letters, 2004, 26(6): 509−515. doi: 10.1023/B:BILE.0000019559.84305.47
    [14] DHEDA K, HUGGETT J F, CHANG J S, et al. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization [J]. Analytical Biochemistry, 2005, 344(1): 141−143. doi: 10.1016/j.ab.2005.05.022
    [15] XIE F L, XIAO P, CHEN D L, et al. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs [J]. Plant Molecular Biology, 2012, 80(1): 75−84. doi: 10.1007/s11103-012-9885-2
    [16] 孙茜茜, 何其光, 靳鹏飞, 等. 橡胶树红根病菌GPFTR1基因的克隆、亚细胞定位与表达分析 [J]. 基因组学与应用生物学, 2019, 38(8):3646−3653.

    SUN Q Q, HE Q G, JIN P F, et al. Cloning, subcellular localization and expression analysis of GPFTR1 gene from Ganoderma pseudoferreum [J]. Genomics and Applied Biology, 2019, 38(8): 3646−3653. (in Chinese)
    [17] 伏雪, 涂敏, 蔡海滨, 等. 橡胶树红根病病原菌木聚糖酶编码基因GpTR1774的克隆与表达分析 [J]. 热带作物学报, 2023, 44(12):2461−2468. doi: 10.3969/j.issn.1000-2561.2023.12.011

    FU X, TU M, CAI H B, et al. Cloning and expression analysis of xylanase GpTR1774 gene from Ganoderma pseudoferreum [J]. Chinese Journal of Tropical Crops, 2023, 44(12): 2461−2468. (in Chinese) doi: 10.3969/j.issn.1000-2561.2023.12.011
    [18] 林仕恺, 涂敏, 鲁红学, 等. 巴西橡胶树红根病病菌液体培养条件优化研究 [J]. 热带农业科学, 2014, 34(10):71−74. doi: 10.3969/j.issn.1009-2196.2014.10.016

    LIN S K, TU M, LU H X, et al. Optimization of Ganoderma pseudoferreum liquid culture condition [J]. Chinese Journal of Tropical Agriculture, 2014, 34(10): 71−74. (in Chinese) doi: 10.3969/j.issn.1009-2196.2014.10.016
    [19] CAO L P, ZHANG Q, MIAO R Y, et al. Reference gene selection for quantitative real-time PCR analysis of Hymenopellis radicata under abiotic stress [J]. Fungal Biology, 2024, 128(1): 1567−1577. doi: 10.1016/j.funbio.2023.11.004
    [20] 吴建阳, 何冰, 杜玉洁, 等. 利用geNorm、NormFinder和BestKeeper软件进行内参基因稳定性分析的方法 [J]. 现代农业科技, 2017, (5):278−281. doi: 10.3969/j.issn.1007-5739.2017.05.174

    WU J Y, HE B, DU Y J, et al. Analysis method of systematically evaluating stability of reference genes using geNorm, NormFinder and BestKeeper [J]. Modern Agricultural Science and Technology, 2017(5): 278−281. (in Chinese) doi: 10.3969/j.issn.1007-5739.2017.05.174
    [21] 张晓华, 孙达锋, 刘绍雄, 等. 食(药)用菌内参基因筛选研究进展 [J]. 中国食用菌, 2023, 42(5):1−6.

    ZHANG X H, SUN D F, LIU S X, et al. Research progress of internal reference gene screening for edible and medicinal fungi [J]. Edible Fungi of China, 2023, 42(5): 1−6. (in Chinese)
    [22] JAIN M, NIJHAWAN A, TYAGI A K, et al. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR [J]. Biochemical and Biophysical Research Communications, 2006, 345(2): 646−651. doi: 10.1016/j.bbrc.2006.04.140
    [23] FANG P, LU R F, SUN F, et al. Assessment of reference gene stability in Rice stripe virus and Rice black streaked dwarf virus infection rice by quantitative Real-time PCR [J]. Virology Journal, 2015, 12: 175. doi: 10.1186/s12985-015-0405-2
    [24] HERIDE C, URBÉ S, CLAGUE M J. Ubiquitin code assembly and disassembly [J]. Current Biology, 2014, 24(6): R215−R220. doi: 10.1016/j.cub.2014.02.002
    [25] XIANG Q J, LI J, QIN P, et al. Identification and evaluation of reference genes for qRT-PCR studies in Lentinula edodes [J]. PLoS One, 2018, 13(1): e0190226. doi: 10.1371/journal.pone.0190226
    [26] WEI Y M, LIU Y, LI L, et al. Identification of s9ap used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of Pleurotus eryngii [J]. Molecular Biology Reports, 2023, 50(1): 621−629. doi: 10.1007/s11033-022-07562-3
    [27] QIAN J, GAO Y N, WÁNG Y, et al. Selection and evaluation of appropriate reference genes for RT-qPCR normalization of Volvariella volvacea gene expression under different conditions [J]. BioMed Research International, 2018, 2018: 6125706.
    [28] ZHANG C, LI T, HOU C L, et al. Selection of reference genes from Shiraia bambusicola for RT-qPCR analysis under different culturing conditions [J]. AMB Express, 2017, 7(1): 14. doi: 10.1186/s13568-016-0314-9
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  83
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-04-24
  • 网络出版日期:  2024-06-26
  • 刊出日期:  2024-05-28

目录

    /

    返回文章
    返回