• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于重测序的南方高蛋白大豆品种福豆234的遗传变异

张玉梅 萧涵 蓝新隆 夏春英 林国强

张玉梅,萧涵,蓝新隆,等. 基于重测序的南方高蛋白大豆品种福豆234的遗传变异 [J]. 福建农业学报,2024,39(6):652−661 doi: 10.19303/j.issn.1008-0384.2024.06.004
引用本文: 张玉梅,萧涵,蓝新隆,等. 基于重测序的南方高蛋白大豆品种福豆234的遗传变异 [J]. 福建农业学报,2024,39(6):652−661 doi: 10.19303/j.issn.1008-0384.2024.06.004
ZHANG Y M, XIAO H, LAN X L, et al. Genetic Variations in Southern High-protein Soybean Fudou 234 by Re-sequencing [J]. Fujian Journal of Agricultural Sciences,2024,39(6):652−661 doi: 10.19303/j.issn.1008-0384.2024.06.004
Citation: ZHANG Y M, XIAO H, LAN X L, et al. Genetic Variations in Southern High-protein Soybean Fudou 234 by Re-sequencing [J]. Fujian Journal of Agricultural Sciences,2024,39(6):652−661 doi: 10.19303/j.issn.1008-0384.2024.06.004

基于重测序的南方高蛋白大豆品种福豆234的遗传变异

doi: 10.19303/j.issn.1008-0384.2024.06.004
基金项目: 福建省科技厅区域发展项目(2023N3001);福建省科技计划公益类专项(2022R1031006);福建省财政专项(CXTD2021011-2)
详细信息
    作者简介:

    张玉梅(1980 —),女,博士,副研究员,主要从事大豆育种与栽培研究,E-mail:2407270791@qq.com

    通讯作者:

    林国强(1965 —),男,研究员,主要从事大豆育种与栽培研究,E-mail:542057656@qq.com

  • 中图分类号: S565.1

Genetic Variations in Southern High-protein Soybean Fudou 234 by Re-sequencing

  • 摘要:   目的  揭示南方高蛋白大豆遗传变异提供理论参考。  方法  通过高通量测序技术对南方高蛋白大豆品种福豆234进行全基因组重测序。  结果  共获得64 757 037条Clean reads,测序深度为17×,基因组覆盖度分别达98.08%(1×)和96.25%(5×)。共鉴定出1478393个单核苷酸多态性(Single nucleotide polymorphism, SNP)位点和356739个小片段插入缺失(Small insertion-deletion, Small InDel)位点。其中共鉴定出14323个非同义SNP突变的基因,4186个Small Indel的突变基因位于编码区(Coding sequence, CDS)。通过COG(Clusters of orthologous groups of proteins)分析发现信号传导机制、转录、碳水化合物转输和代谢等和KEGG(Kyoto encyclopedia of genes and genomes)分析发现碳代谢、淀粉和蔗糖代谢、氨基酸生物合成、植物激素信号传导、内质网蛋白质加工等通路与福豆234遗传变异相关。此外,本研究以大豆籽粒蛋白质含量数量性状基因座(Quantitative trait locus, QTL)的两个主要区段内的候选基因进行分析,发现有65个基因发生SNP或Small InDel水平的变异,其中,SNP变异类型达10种,Small InDel变异类型达7种。  结论  本研究初步揭示南方高蛋白大豆的遗传变异规律,为高蛋白大豆品种选育和分子标记的开发提供数据支持和理论依据。
  • 图  1  福豆234测序数据分析

    A:福豆234染色体覆盖深度分布;B:福豆234各类型变异在染色体的分布。

    Figure  1.  Analysis of sequencing data of Fudou 234

    A: distribution of chromosomes coverage depth of Fudou 234; B: the distribution of the variations of Fudou 234 on the chromosomes.

    图  2  福豆234的SNP注释结果

    A:福豆234的SNP变异分布全基因组注释结果;B:福豆234的SNP变异分布CDS注释结果。

    Figure  2.  SNP annotations of Fudou 234

    A: genome-whole annotation statistics of SNP variant distribution of Fudou 234; B: CDS annotation statistics of SNP variant distribution of Fudou 234.

    图  3  福豆234的CDS区和全基因组Small Indel长度分布

    Figure  3.  CDS region and distribution of Small Indel lengths in whole genome of Fudou 234

    图  4  福豆234的Small InDel注释结果

    A:福豆234的Small InDel变异分布全基因组注释结果;B:福豆234的Small InDel变异分布CDS注释结果。

    Figure  4.  Small InDel annotations of Fudou 234

    A: genome-whole annotation statistics of Small InDel variant distribution of Fudou 234; B: CDS annotation statistics of Small InDel variant distribution of Fudou 234.

    图  5  福豆234的遗传变异基因COG富集

    Figure  5.  COG enrichment of genetic variants in Fudou 234

    图  6  福豆234的遗传变异基因KEGG富集

    Figure  6.  KEGG enrichment of genetic variants in Fudou 234

    表  1  福豆234中与大豆蛋白质含量主要QTL区段候选基因SNP和Small Indel变异

    Table  1.   SNP and Small InDel variations of candidate genes in main QTL segments related to soybean protein content in Fudou 234

    基因名称
    Gene ID
    变异类型 Variation type 基因名称
    Gene ID
    变异类型 Variation type 基因名称
    Gene ID
    变异类型 Variation type
    SNP Small InDel SNP Small InDel SNP Small InDel
    Glyma.20G082300 2 1 Glyma.20G086900 / 2 Glyma.10G133900 1 1
    Glyma.20G082700 / 1 Glyma.20G087000 6 / Glyma.10G134100 1,7,2 7
    Glyma.20G082800 7 / Glyma.20G087200 1 / Glyma.10G134400 1 1,7
    Glyma.20G082900 2 / Glyma.15G048600 2 2 Glyma.10G134500 1,7 1
    Glyma.20G083100 1,7,5,8,6,2 1 Glyma.15G048700 1, 7 2 Glyma.10G136100 1 /
    Glyma.20G083200 1,2 1,2 Glyma.15G048800 1, 7, 5,3, 2 1,11,7,3,2 Glyma.10G136300 2,1 2
    Glyma.20G083300 1,7, 5,3,2 1,2 Glyma.15G048900 1, 4, 6,2 1,7,2 Glyma.10G136400 2 2
    Glyma.20G083500 1,7,4,2 1,7,2 Glyma.15G049000 1,10,6,7,3,2 1,4,11,3,7 Glyma.10G136600 7 /
    Glyma.20G083600 1,10,5,6,3,4,2 4,2 Glyma.15G049500 3,5 / Glyma.10G136800 1,7,2 1,2,3
    Glyma.20G083800 4,1 1 Glyma.15G049600 3,7,6,1 1,2,7 Glyma.08G182200 / 1
    Glyma.20G084000 1,4,8,7,2 1,2 Glyma.15G049700 2,3,6,10,4,1 2,1 Glyma.08G182300 / 1,7
    Glyma.20G084100 1,10,5,3,4,2 1,2,4 Glyma.15G049800 2,5,8,7,1 2,7,1 Glyma.08G182400 / 2
    Glyma.20G084200 1,5 1 Glyma.15G049900 2,6,7,9,1 1,11,7,3,4 Glyma.08G182500 / 7
    Glyma.20G084500 1,5,2 / Glyma.15G050100 2,7 2 Glyma.08G182700 / 1,2,7,9
    Glyma.20G084900 1 / Glyma.15G050200 5,1 2,1 Glyma.08G182900 / 1,7
    Glyma.20G085000 1 2 Glyma.15G050300 3 1 Glyma.08G183000 / 1,7,3,2
    Glyma.20G085100 / 2 Glyma.15G050500 1,2,7 1,7 Glyma.08G183400 / 1
    Glyma.20G085300 / 1 Glyma.15G050600 1,2,7 1 Glyma.08G183500 / 7,3,2
    Glyma.20G085700 2 2 Glyma.10G132200 1,7,5,6,2 1,2 Glyma.08G183600 / 2
    Glyma.20G085900 1 2 Glyma.10G132700 2,6 2,7 Glyma.08G183900 / 7,1
    Glyma.20G086100 / 1 Glyma.10G132800 3,1 / Glyma.08G184100 / 2,7,1
    Glyma.20G086800 2 2 Glyma.10G133700 2 /
    11种变异类型中,1~11分别代表变异位点发生在基因上游区域、基因下游区域、基因的3’UTR内、基因的5’UTR内、编码区内同义突变、编码区内非同义突变、内含子、剪切位点区域、剪切受体突变、非编码区内起始密码子获得、密码子插入以及移码突变。
    1~11 indicate mutation sites in 11 variation types occurred upstream, downstream, UTR 3 prime, UTR 5 prime, synonymous coding, non-synonymous coding, intron, splice site region, splice site donor, start gained, codon insertion, and frame shift, respectively.
    下载: 导出CSV
  • [1] CAO P, ZHAO Y, WU F J, et al. Multi-omics techniques for soybean molecular breeding [J]. International Journal of Molecular Sciences, 2022, 23(9): 4994. doi: 10.3390/ijms23094994
    [2] XU X Y, BAI G H. Whole-genome resequencing: Changing the paradigms of SNP detection, molecular mapping and gene discovery [J]. Molecular Breeding, 2015, 35(1): 33. doi: 10.1007/s11032-015-0240-6
    [3] HUANG X H, FENG Q, QIAN Q, et al. High-throughput genotyping by whole-genome resequencing [J]. Genome Research, 2009, 19(6): 1068−1076. doi: 10.1101/gr.089516.108
    [4] PETEREIT J, MARSH J I, BAYER P E, et al. Genetic and genomic resources for soybean breeding research [J]. Plants, 2022, 11(9): 1181. doi: 10.3390/plants11091181
    [5] YANG C M, YAN J, JIANG S Q, et al. Resequencing 250 soybean accessions: New insights into genes associated with agronomic traits and genetic networks[J]. Genomics, Proteomics & Bioinformatics, 2022, 20(1): 29-41.
    [6] LIU N, NIU Y C, ZHANG G W, et al. Genome sequencing and population resequencing provide insights into the genetic basis of domestication and diversity of vegetable soybean [J]. Horticulture Research, 2022, 9: uhab052. doi: 10.1093/hr/uhab052
    [7] LEE K J, KIM D S, KIM J B, et al. Identification of candidate genes for an early-maturing soybean mutant by genome resequencing analysis [J]. Molecular Genetics and Genomics, 2016, 291(4): 1561−1571. doi: 10.1007/s00438-016-1183-2
    [8] MALDONADO DOS SANTOS J V, VALLIYODAN B, JOSHI T, et al. Evaluation of genetic variation among Brazilian soybean cultivars through genome resequencing [J]. BMC Genomics, 2016, 17: 110. doi: 10.1186/s12864-016-2431-x
    [9] JIANG H, JIA H Y, HAO X S, et al. Mapping Locus RSC11K and predicting candidate gene resistant to Soybean mosaic virus strain SC11 through linkage analysis combined with genome resequencing of the parents in soybean [J]. Genomics, 2022, 114(4): 110387. doi: 10.1016/j.ygeno.2022.110387
    [10] YUAN Y, YANG Y Q, SHEN Y C, et al. Mapping and functional analysis of candidate genes involved in resistance to soybean (Glycine max) mosaic virus strain SC3 [J]. Plant Breeding, 2020, 139(3): 618−625. doi: 10.1111/pbr.12799
    [11] 林国强, 张轼, 滕振勇, 等. 高蛋白大豆福豆234的选育及高产农艺措施数学模型 [J]. 福建农业学报, 2005, 20(2):69−73. doi: 10.3969/j.issn.1008-0384.2005.02.002

    LIN G Q, ZHANG S, TENG Z Y, et al. Breeding and mathematical model of agronomic measures for high yield and protein content soybean variety Fudou 234 [J]. Fujian Journal of Agricultural Sciences, 2005, 20(2): 69−73. (in Chinese) doi: 10.3969/j.issn.1008-0384.2005.02.002
    [12] ABOUL-MAATY N A F, ORABY H A S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method [J]. Bulletin of the National Research Centre, 2019, 43(1): 25. doi: 10.1186/s42269-019-0066-1
    [13] 张彦威, 李伟, 张礼凤, 等. 基于重测序的大豆新品种齐黄34的全基因组变异挖掘 [J]. 中国油料作物学报, 2016, 38(2):150−158. doi: 10.7505/j.issn.1007-9084.2016.02.003

    ZHANG Y W, LI W, ZHANG L F, et al. Genome-wide variations of soybean cultivar Qihuang 34 by whole genome re-sequencing [J]. Chinese Journal of Oil Crop Sciences, 2016, 38(2): 150−158. (in Chinese) doi: 10.7505/j.issn.1007-9084.2016.02.003
    [14] 郭丹丹, 袁凤杰, 郁晓敏. 基于重测序的籽粒型和鲜食型大豆的全基因组变异分析 [J]. 分子植物育种, 2019, 17(22):7306−7312.

    GUO D D, YUAN F J, YU X M. Genome-wide variation analysis of grain and vegetable soybeans based on re-sequencing [J]. Molecular Plant Breeding, 2019, 17(22): 7306−7312. (in Chinese)
    [15] LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform [J]. Bioinformatics, 2009, 25(14): 1754−1760. doi: 10.1093/bioinformatics/btp324
    [16] LI H, HANDSAKER B, WYSOKER A, et al. The Sequence Alignment/Map format and SAMtools [J]. Bioinformatics, 2009, 25(16): 2078−2079. doi: 10.1093/bioinformatics/btp352
    [17] MCKENNA A, HANNA M, BANKS E, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data [J]. Genome Research, 2010, 20(9): 1297−1303. doi: 10.1101/gr.107524.110
    [18] 沈丽丽, 曹斌斌, 杨光耀, 等. 毛竹及其2种竿型变异类型的全基因组重测序分析 [J]. 基因组学与应用生物学, 2023, 42(6):581−592.

    SHEN L L, CAO B B, YANG G Y, et al. Whole genome resequencing analysis of moso bamboo(Phyllostachys edulis)and its two culm variants [J]. Genomics and Applied Biology, 2023, 42(6): 581−592. (in Chinese)
    [19] CINGOLANI P, PLATTS A, WANG L L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 [J]. Fly, 2012, 6(2): 80−92. doi: 10.4161/fly.19695
    [20] 魏荷, 王金社, 卢为国. 大豆籽粒蛋白质含量分子遗传研究进展 [J]. 中国油料作物学报, 2015, 37(3):394−410. doi: 10.7505/j.issn.1007-9084.2015.03.021

    WEI H, WANG J S, LU W G. Molecular genetic advances in soybean seed protein [J]. Chinese Journal of Oil Crop Sciences, 2015, 37(3): 394−410. (in Chinese) doi: 10.7505/j.issn.1007-9084.2015.03.021
    [21] BANDILLO N, JARQUIN D, SONG Q J, et al. A population structure and genome-wide association analysis on the USDA soybean germplasm collection[J]. The Plant Genome, 2015, 8(3): eplantgenome2015.04. 0024.
    [22] PATIL G, MIAN R, VUONG T, et al. Molecular mapping and genomics of soybean seed protein: A review and perspective for the future [J]. Theoretical and Applied Genetics, 2017, 130(10): 1975−1991. doi: 10.1007/s00122-017-2955-8
    [23] VAN K, MCHALE L K. Meta-analyses of QTLs associated with protein and oil contents and compositions in soybean[Glycine max (L.) Merr. ]seed [J]. International Journal of Molecular Sciences, 2017, 18(6): 1180. doi: 10.3390/ijms18061180
    [24] LAM H M, XU X, LIU X, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection [J]. Nature Genetics, 2010, 42: 1053−1059. doi: 10.1038/ng.715
    [25] SCHMUTZ J, CANNON S B, SCHLUETER J, et al. Genome sequence of the palaeopolyploid soybean [J]. Nature, 2010, 463: 178−183. doi: 10.1038/nature08670
    [26] 郭茜茜. 大豆子粒蛋白质积累与碳代谢关系的研究[D]. 哈尔滨: 东北农业大学, 2010:16-41.

    GUO Q Q. Study on the relationship between protein accumulation and carbon metabolism in soybean seeds[D]. Harbin: Northeast Agricultural University, 2010:16-41. (in Chinese)
    [27] PATIL G, VUONG T D, KALE S, et al. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping [J]. Plant Biotechnology Journal, 2018, 16(11): 1939−1953. doi: 10.1111/pbi.12929
    [28] 王嘉, 曾召琼, 梁建秋, 等. 基于全基因组重测序的大豆分子标记开发及籽粒蛋白质含量QTL定位 [J]. 中国农业科学, 2019, 52(16):2743−2757. doi: 10.3864/j.issn.0578-1752.2019.16.001

    WANG J, ZENG Z Q, LIANG J Q, et al. Development new molecular markers for quantitative trait locus (QTL) analysis of the seed protein content based on whole genome re-sequencing in soybean [J]. Scientia Agricultura Sinica, 2019, 52(16): 2743−2757. (in Chinese) doi: 10.3864/j.issn.0578-1752.2019.16.001
    [29] FLIEGE C E, WARD R A, VOGEL P, et al. Fine mapping and cloning of the major seed protein quantitative trait loci on soybean chromosome 20 [J]. The Plant Journal: for Cell and Molecular Biology, 2022, 110(1): 114−128. doi: 10.1111/tpj.15658
    [30] MA Q J, SUN M H, LU J, et al. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes [J]. Plant Physiology, 2017, 174(4): 2348−2362. doi: 10.1104/pp.17.00502
    [31] 张计育, 王刚, 王涛, 等. SWEET蛋白在植物生长发育中的功能作用研究进展[J]. 植物资源与环境学报, 2023, 32(5): 1-15.

    ZHANG J Y, WANG G, WANG T, et al. Research progress on functional roles of SWEET proteins in plant growth and development[J]. Journal of Plant Resources and Environment, 2023, 32(5): 1-15. (in Chinese) Development[J]. Journal of Plant Resources and Environment, 2023, 32(5): 1-15. (in Chinese)
    [32] CHEN L Q, QU X Q, HOU B H, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport [J]. Science, 2012, 335(6065): 207−211. doi: 10.1126/science.1213351
    [33] TAKAHASHI F, SATO-NARA K, KOBAYASHI K, et al. Sugar-induced adventitious roots in Arabidopsis seedlings [J]. Journal of Plant Research, 2003, 116(2): 83−91. doi: 10.1007/s10265-002-0074-2
    [34] WANG S D, YOKOSHO K, GUO R Z, et al. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo [J]. Plant Physiology, 2019, 180(4): 2133−2141. doi: 10.1104/pp.19.00641
    [35] 柯博洋, 李文龙, 张彩英. 大豆SWEET基因在荚粒发育过程中与逆境胁迫下的表达 [J]. 中国农业科技导报, 2023, 25(8):33−52.

    KE B Y, LI W L, ZHANG C Y. Expressions of SWEET genes during pod and seed developments and under different stress conditions in soybean [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 33−52. (in Chinese)
    [36] PATIL G, VALLIYODAN B, DESHMUKH R, et al. Soybean (Glycine max) SWEET gene family: Insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis [J]. BMC Genomics, 2015, 16(1): 520. doi: 10.1186/s12864-015-1730-y
    [37] RANOCHA P, DENANCÉ N, VANHOLME R, et al. Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers [J]. The Plant Journal: for Cell and Molecular Biology, 2010, 63(3): 469−483. doi: 10.1111/j.1365-313X.2010.04256.x
    [38] PAL L, SANDHU S K, BHATIA D, et al. Genome-wide association study for candidate genes controlling seed yield and its components in rapeseed (Brassica napus subsp. napus) [J]. Physiology and Molecular Biology of Plants, 2021, 27(9): 1933−1951. doi: 10.1007/s12298-021-01060-9
    [39] LIU C, ZENG L B, ZHU S Y, et al. Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmeria nivea L. Gaud) [J]. DNA Research: an International Journal for Rapid Publication of Reports on Genes and Genomes, 2018, 25(2): 173−181. doi: 10.1093/dnares/dsx047
    [40] 刘顺湖, 周瑞宝, 盖钧镒. 大豆蛋白质有关性状遗传的分离分析 [J]. 作物学报, 2009, 35(11):1958−1966. doi: 10.3724/SP.J.1006.2009.01958

    LIU S H, ZHOU R B, GAI J Y. Segregation analysis for inheritance of protein related traits in soybean[Glycine max (L. ) merr. [J]. Acta Agronomica Sinica, 2009, 35(11): 1958−1966. (in Chinese) doi: 10.3724/SP.J.1006.2009.01958
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  64
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-17
  • 录用日期:  2024-07-24
  • 修回日期:  2024-06-11
  • 网络出版日期:  2024-08-15
  • 刊出日期:  2024-06-28

目录

    /

    返回文章
    返回