Mating Type and Effective Control of Phytophthora colocasiae
-
摘要:
目的 明确福建省芋疫霉交配型,筛选可用于防治芋疫病的化学药剂。 方法 对2020年采集自福建4个地区的芋疫病样本进行病原菌进行分离纯化,结合形态特征观察、致病性测定和Ypt1序列同源性分析对病原菌进行鉴定,通过与辣椒疫霉A1、A2交配型菌株对峙培养来测定其交配型,利用菌丝生长法测定6种杀菌剂对病原菌的室内毒力。 结果 通过形态特征观察、致病性测定和Ypt1序列同源性分析,明确所分离病原菌均为芋疫霉(Phytophthora colocasiae)。交配型测定发现,所分离的125个芋疫霉菌株中,122个为A2交配型,3个为A1A2交配型;室内药剂筛选结果表明,98%甲霜灵对芋疫霉抑菌效果最好,EC50值为0.146±0.032 μg·mL−1;95%烯酰吗啉、98%氟吡菌胺和94%氰霜唑抑菌效果较好,EC50值介于(0.239±0.011)~(0.713±0.088) μg·mL−1;而95%嘧菌酯的抑菌活性最低,EC50值为23.447±3.666 μg·mL−1。 结论 福建省芋疫霉以A2交配型为优势群体,甲霜灵、烯酰吗啉、氟吡菌胺和氰霜唑可作为芋疫病高效防控的轮换使用药剂。 Abstract:Objective Mating type and fungicides for effective control of Phytophthora colocasiae that caused 2020 taro blight epidemic in Fujian were determined. Method Specimens of diseased taro tissues were collect from the 4 blight-infected regions in Fujian to isolate and identify the pathogen. Based on the morphology, pathogenicity, and sequence homology of Ypt1, the pathogenic strains were identified to be of P. colocasiae. Subsequently, mating type and sensitivity to 6 fungicides of the isolates were determined in the laboratory. Result In total, 125 strains were isolated and identified to have caused the epidemic. Out of them, 122 belonged to the A2 mating type and 3 the A1A2 type. The laboratory toxicity test of 6 fungicides on the isolates showed 98% metalaxyl to be the strongest with EC50 of 0.146±0.032 μg·mL−1, while the EC50 of 95% dimethomorph, 98% fluopicolide, and 94% cyazofamid ranged from 0.239±0.011 μg·mL−1 to 0.713±0.088 μg·mL−1 and that of 95% azoxystrobin at 23.447±3.666 μg·mL−1. Conclusion The dominant strains of P. colocasiae that caused the taro blight in Fujian in 2020 were of the A2 mating type and could be best controlled by using 98% metalaxyl, 95% dimethomorph, 98% fluopicolide, or 94% cyazofamid. -
Key words:
- Phytophthora colocasiae /
- pathogen identification /
- mating type /
- fungicides
-
图 4 基于ITS-LSU-Ypt1基因联合序列构建的系统发育树
每个分支上方的数值表示来自邻接法的自展值,以1000次重复的百分比表示;红色菱形代表分离的病原菌株。
Figure 4. Phylogenetic tree of FZPc-1, LYPc-1, NDPc-1, and NPPc-1 based on ITS-LSU-Ypt1 sequences by NJ method
Data above each branch indicate bootstrap values from neighbor-joining method as percentages in 1,000 replicates; red diamonds indicate isolated pathogens.
图 5 福建省芋疫霉菌株交配型测定
A: 菌株单独培养;B:菌株与辣椒疫霉A1交配型菌株对峙培养;C:菌株与辣椒疫霉A2交配型菌株对峙培养;D:藏卵器、卵孢子和雄器。
Figure 5. Mating types of P. colocasiae from Fujian
A: Culture of individual P. colocasiae isolate; B: confrontation culture between isolate and P. capsici strain of A1 mating type; C: confrontation culture between isolate and P. capsici strain of A2 mating type; D: oogonium, oospore, and antheridium.
表 1 福建不同地区芋疫霉交配型构成及地理分布
Table 1. Mating types and distribution of P. colocasiae strains in Fujian
地区
Location菌株数
Number of isolatesA2交配型
A2 mating typeA1A2交配型
A1A2 mating type菌株数
Number of isolates频率
Frequency /%菌株数
Number of isolates频率
Frequency/%龙岩 Longyan 37 35 28.0 2 1.6 福州 Fuzhou 31 31 24.8 0 0 南平 Nanping 29 28 22.4 1 0.8 宁德 Ningde 28 28 22.4 0 0 总计 Total 125 122 97.6 3 2.4 表 2 6种杀菌剂对福建省不同地区芋疫霉的室内毒力测定结果
Table 2. Inhibition effects of 6 fungicides against P. colocasiae from regions infected by taro blight in Fujian
杀菌剂
Fungicides菌株来源
Source of isolate毒力回归方程
Toxicity equation相关系数
Correlation coefficient(r)EC50 /(μg·mL−1) 均值±标准误
Mean±SE /(μg·mL−1)98% 甲霜灵
98% Metalaxyl龙岩 y= 1.2251 x +7.7317 0.9991 0.108 0.146±0.032 福州 y=1.404x + 7.3045 0.9790 0.194 南平 y= 0.9833 x +7.0201 0.9871 0.128 宁德 y= 0.9689 x + 6.810.9780 0.154 98% 霜脲氰
98% Cymoxanil龙岩 y= 0.3639 x+4.7535 0.9262 1.969 2.125±0.753 福州 y= 0.5661 x +4.8864 0.9664 1.222 南平 y= 0.4829 x +4.4215 0.9717 3.313 宁德 y= 1.0471 x +4.2766 0.986 1.995 98% 吡菌胺
98% Fluopicolide龙岩 y= 2.8279 x +7.1018 0.9467 0.476 0.370±0.064 福州 y= 1.7423 x +7.0719 0.9618 0.304 南平 y= 1.8045 x +6.9453 0.9748 0.340 宁德 y= 2.0973 x +7.1405 0.9205 0.360 95% 嘧菌酯
95% Azoxystrobin龙岩 y= 0.3594 x+3.9249 0.9060 19.917 23.447±3.666 福州 y= 0.2455 x+4.2175 0.9675 24.220 南平 y= 0.4168 x+3.7405 0.9712 20.530 宁德 y= 0.4742 x+3.4013 0.9047 29.120 94% 氰霜唑
94% Cyazofamid龙岩 y= 0.1778 x+5.0507 0.9722 0.753 0.713±0.088 福州 y= 0.2725 x+5.0668 0.9314 0.783 南平 y= 0.2603 x +5.0734 0.9046 0.754 宁德 y= 0.5180 x+5.2986 0.9486 0.562 95% 烯酰吗啉
95% Dimethomorth龙岩 y= 3.5896 x + 10.2720.9738 0.230 0.239±0.011 福州 y= 3.3262 x +9.9644 0.9889 0.225 南平 y= 3.6195 x + 10.0170.9807 0.250 宁德 y= 3.6711 x + 10.1010.9776 0.249 -
[1] 叶泉清, 钟佳玲, 陈媚, 等. 槟榔芋疫霉菌生物学特性、致病力测定及田间防治药剂筛选 [J]. 南方农业学报, 2016, 47(4):588−593. doi: 10.3969/j:issn.2095-1191.2016.04.588YE Q Q, ZHONG J L, CHEN M, et al. Biological characteristics, virulence of Phytophthora colocasiae Racib. from Colocasia esculenta L. var. cormosus Chang and fungicides screening for field control [J]. Journal of Southern Agriculture, 2016, 47(4): 588−593. (in Chinese) doi: 10.3969/j:issn.2095-1191.2016.04.588 [2] 兰成忠, 卢学松, 姚锦爱, 等. 芋疫霉菌的巢式PCR检测 [J]. 福建农业学报, 2019, 34(1):76−82.LAN C Z, LU X S, YAO J A, et al. Nested-PCR detection of taro leaf blight pathogen Phytophthora colocasiae [J]. Fujian Journal of Agricultural Sciences, 2019, 34(1): 76−82. (in Chinese) [3] NATH V S, HEGDE V M, JEEVA M L, et al. Morphological, pathological and molecular characterization of Phytophthora colocasiae responsible for taro leaf blight disease in India [J]. Phytoparasitica, 2015, 43(1): 21−35. doi: 10.1007/s12600-014-0422-5 [4] 孙道旺, 曹继芬, 裴卫华, 等. 云南魔芋新病害—疫病病原菌的鉴定 [J]. 植物病理学报, 2015, 45(1):84−87.SUN D W, CAO J F, PEI W H, et al. Identification of a new Phytophthora blight disease on konjac in Yunnan [J]. Acta Phytopathologica Sinica, 2015, 45(1): 84−87. (in Chinese) [5] 王瑞仙, 邵梅, 于德才, 等. 魔芋疫病烟草疫霉菌(Phytophthora nicotianae)的致病性研究 [J]. 云南农业大学学报(自然科学), 2018, 33(2):213−217.WANG R X, SHAO M, YU D C, et al. Pathogenicity identification of Phytophthora nicotianae causing konjac disease in Yunnan, China [J]. Journal of Yunnan Agricultural University (Natural Science), 2018, 33(2): 213−217. (in Chinese) [6] 董伟清, 何芳练, 江文, 等. 荔浦芋疫病病原鉴定及原生质体制备 [J]. 南方农业学报, 2016, 47(11):1861−1866. doi: 10.3969/jissn.2095-1191.2016.11.1861DONG W Q, HE F L, JIANG W, et al. Identification of Colocasia esculenta(L. ) Schott var. Lipu Taro leaf blight disease causal pathogen and its protoplasts preparation [J]. Journal of Southern Agriculture, 2016, 47(11): 1861−1866. (in Chinese) doi: 10.3969/jissn.2095-1191.2016.11.1861 [7] HE X L, MIYASAKA S C, FITCH M M M, et al. Taro (Colocasia esculenta) transformed with a wheat oxalate oxidase gene for improved resistance to taro pathogen Phytophthora colocasiae [J]. HortScience, 2013, 48(1): 22−27. doi: 10.21273/HORTSCI.48.1.22 [8] MISRA R S, MISHRA A K, SHARMA K, et al. Characterisation ofPhytophthora colocasiaeisolates associated with leaf blight of taro in India [J]. Archives of Phytopathology And Plant Protection, 2011, 44(6): 581−591. doi: 10.1080/03235400903266339 [9] KO W H. Mating-type distribution of Phytophthora colocasiae on the island of Hawaii [J]. Mycologia, 1979, 71(2): 434. doi: 10.1080/00275514.1979.12021021 [10] LIN M J, KO W H. Occurrence of isolates of Phytophthora colocasiae in Taiwan with homothallic behavior and its significance [J]. Mycologia, 2008, 100(5): 727−734. doi: 10.3852/08-070 [11] ZHANG K M, ZHENG F C, LI Y D, et al. Isolates of Phytophthora colocasiae from Hainan Island in China: Evidence suggesting an Asian origin of this species [J]. Mycologia, 1994, 86(1): 108. doi: 10.1080/00275514.1994.12026379 [12] ANN P J, KAO C W, KO W H. Mating-type distribution of Phytophthora colocasiae in Taiwan [J]. Mycopathologia, 1986, 93(3): 193−194. doi: 10.1007/BF00443524 [13] 陆叶, 陆志翔, 何芳练, 等. 桂东南地区芋疫霉的交配型研究 [J]. 基因组学与应用生物学, 2013, 32(3):285−290.LU Y, LU Z X, HE F L, et al. A research on mating types of Phytophthora colocasiae in south-eastern Guangxi Province [J]. Genomics and Applied Biology, 2013, 32(3): 285−290. (in Chinese) [14] 董伟清, 江文, 何芳练, 等. 广西地区荔浦芋新品种疫霉交配型和甲霜灵抗性研究 [J]. 长江蔬菜, 2018, (10):41−44.DONG W Q, JIANG W, HE F L, et al. Study on mating type and metalaxyl resistance of a new variety of taro in Lipu, Guangxi [J]. Journal of Changjiang Vegetables, 2018(10): 41−44. (in Chinese) [15] ADOMAKO J, KWOSEH C, MOSES E. Metalaxyl sensitivity and aggressiveness of phytophthora colocasiae isolates associated with taro leaf blight disease [J]. JOURNAL OF PLANT PATHOLOGY, 2017, 99(1): 205−210. [16] 游世奇. 5种药剂对槟榔芋疫病的田间防效 [J]. 中国植保导刊, 2020, 40(2):71−72. doi: 10.3969/j.issn.1672-6820.2020.02.017YOU S Q. Field control effect of five pesticides on betel nut taro blight [J]. China Plant Protection, 2020, 40(2): 71−72. (in Chinese) doi: 10.3969/j.issn.1672-6820.2020.02.017 [17] 方辉, 张惠琴, 陈孝赏, 等. 双炔酰菌胺防治红香芋疫病的效果及应用技术 [J]. 浙江农业科学, 2016, 57(6):899−900,911.FANG H, ZHANG H Q, CHEN X S, et al. Effect and application technology of diacetylbenzamide on controlling red taro blight [J]. Journal of Zhejiang Agricultural Sciences, 2016, 57(6): 899−900,911. (in Chinese) [18] 李本金, 陈庆河, 兰成忠, 等. 福建省大豆根腐病病原菌的鉴定 [J]. 福建农业学报, 2011, 26(5):798−803. doi: 10.3969/j.issn.1008-0384.2011.05.024LI B J, CHEN Q H, LAN C Z, et al. A identification and pathogenicity test of the pathogens causing soybean root rot in Fujian [J]. Fujian Journal of Agricultural Sciences, 2011, 26(5): 798−803. (in Chinese) doi: 10.3969/j.issn.1008-0384.2011.05.024 [19] 李华义, 何运转, 张艳杰, 等. 掌叶半夏疫病病原菌的分离与鉴定 [J]. 河北农业大学学报, 2016, 39(4):68−72.LI H Y, HE Y Z, ZHANG Y J, et al. Isolation and identification of blight disease on Pinellia pedatisecta [J]. Journal of Hebei Agricultural University, 2016, 39(4): 68−72. (in Chinese) [20] 郑小波. 疫霉菌及其研究技术[M]. 北京: 中国农业出版社, 1997. [21] MBONG G A, FOKUNANG C N, FONTEM L A, et al. An overview of Phytophthora colocasiae of cocoyams: a potential economic disease of food security in Cameroon [J]. Discourse Journal of Agriculture & Food Sciences, 2013, 1(9): 140−145. [22] 苗建强, 蔡萌, 张灿, 等. 植物病原卵菌对重要抑制剂的抗性分子机制研究进展 [J]. 农药学学报, 2019, 21(5-6):736−746.MIAO J Q, CAI M, ZHANG C, et al. Molecular resistance mechanism of phytopathogenic oomycete to several important fungicides [J]. Chinese Journal of Pesticide Science, 2019, 21(5-6): 736−746. (in Chinese) [23] 路粉, 赵建江, 刘晓芸, 等. 马铃薯晚疫病菌对甲霜灵的抗性监测及替代药剂防治效果 [J]. 中国农业科学, 2018, 51(14):2700−2710. doi: 10.3864/j.issn.0578-1752.2018.14.007LU F, ZHAO J J, LIU X Y, et al. Monitoring of resistance of Phytophthora infestans on potato to metalaxyl and the control efficacy of alternative fungicides [J]. Scientia Agricultura Sinica, 2018, 51(14): 2700−2710. (in Chinese) doi: 10.3864/j.issn.0578-1752.2018.14.007 [24] 蓝雯婷, 任董董, 李瑞环, 等. 荔枝霜疫霉对烯酰吗啉的抗性风险评估 [J]. 果树学报, 2023, 40(6):1226−1234.LAN W T, REN D D, LI R H, et al. Baseline sensitivity and resistance risk assessment of Peronophythora li-tchii to dimethomorph [J]. Journal of Fruit Science, 2023, 40(6): 1226−1234. (in Chinese) [25] 张世才, 李怡斐, 王春萍, 等. 重庆地区辣椒疫霉交配型分布及对烯酰吗啉的敏感性现状 [J]. 植物保护, 2022, 48(2):173−176,182.ZHANG S C, LI Y F, WANG C P, et al. Distribution of mating types of Phytophthora capsici and its sensitivity to dimethomorph in Chongqing [J]. Plant Protection, 2022, 48(2): 173−176,182. (in Chinese) [26] 邹芬, 何烈干, 李湘民, 等. 江西槟榔芋疫病病原菌鉴定及室内药剂筛选 [J]. 植物保护, 2023, 49(1):311−316.ZOU F, HE L G, LI X M, et al. Identification of the pathogen of Binglang taro leaf blight in Jiangxi Province and laboratory screening of fungicides [J]. Plant Protection, 2023, 49(1): 311−316. (in Chinese) [27] 洪爱梅, 张海艳, 段云辉, 等. 9种杀菌剂防控芋疫病效果评价 [J]. 世界农药, 2022, 44(9):41−45.HONG A M, ZHANG H Y, DUAN Y H, et al. Evaluation on the control efficacy of nine fungicides against taro leaf blight [J]. World Pesticide, 2022, 44(9): 41−45. (in Chinese)